Effective
Object-Oriented
Software Construction

Concepts, Principles, Industrial
Strategies and Practices

What you should know
to succeed in any object-
oriented environment

Structuring your C++
development project for
maximum efficiency

Includes an under-the-hood
look at language design

'a- Class diagrams in UML

H||||H|||ll|| mmm

KAYSHAV DATTATRI
Foreword by Eric Gamma



Contents

S B

R A
P Povewdrd XV
" Preface xvii
Acknowledgments : xxi

Part I: Concepts, Practices, and Applications

1 What Is Object-Oriented Programming?
Background
Procedure-Oriented Programming Example
Representation of a Bank Account
Security for a Bank Account
Solving it with Object-Oriented Programming
Understanding the Object Model
Terminology
Understanding Messages, Methods, and Instance Variables
What is Contained in an Object?
Instantiating (or Creating) Objects 11
‘What can be Categorized as a Class? 1
What is NOT a class? 12

D00 00 - L b ) e



Purpose of a Class
More about Objects
State of an Object
Why is the State of an Object Important?
Who Controls the State of an Object?
Behavior of an Object
Phases in an Object-Oriented Software Development
Object-Oriented Analysis
Object-Oriented Design
Object-Oriented Programming
Key Elements of the Object Model
OOP Paradigms and Languages
Requirements of an Object-Oriented Programming Language
Benefits of the Object Model
Summary

What Is Data Abstraction?

Analysis of the LD Player Design

Separation of Interface and Implementation
Meaning of Interface

Why the Interface to the Object Is So Important
What is a Sufficient Interface?

Meaning of Implementation

Protecting the Implementation

What is the Benefit of Data Encapsulation?

Relation Between Interface, Implementation, and Data Encapsulation

Precautions with Data Encapsulation

What (and When) to Encapsulate?

Abstract Data Types

Implementation of the Abstract Data Type—Stack

Data Abstraction with C++

Access Regions in a Class

Some Terminology Used with Classes

Who is the Implementor of a Class?

Implementing the Member Functions

Identifying the Target Object in Member Functions

A Sample Program

The Focus is on the Object

A Second Look at Interface

‘What is a Multi-Thread Safe Class?

Ensuring Reliability of Abstractions—Class Invariants and Assertions
Class Invariants
Preconditions and Postconditions
Using Assertions for Implementing Invariants and Conditions
Using Assertions Effectively

Notations for Representing OO Designs

The Booch Notation

13
15
15
15
17
18
18
18

21
21

25
26

27
30
30
30
31
31
32
32
34
35
36
36
37
38

41
47
48
49
49
52
53
53
55
57
57
57
59
60
60
61



Class Relationships 61

Association 62
Aggregation (has-a) 62
The Using Relationship 65
The Inheritance Relationship (is-a) 66
Class Categories 66
The Unified Modeling Language (UML) 67
Class Relationships - 68
Association 69
Association as an Aggregation 71
The OR Association 72
Composition 72
The Generalization Relationship (is-a) 74
The Importance of the has-a Relationship 75
Summary 76
Data Abstraction with C++ 77
Fundamentals of the Class Concept 77
Details of Class Elements 78
Access Regions 78
Copy Constructor 81
Accessing Data Members of an Object—the C++ Model 85
The Assignment Operation 29
More on the this Pointer and Name Manghng 95
The Concept of a const Member Function 98
How a Compiler Implements a const Member Function 59
Ditferences Between Class and Struct in C++ 100
‘What Can a Class Contain? 100
Focus Is on the Interface of a Class During Design 101
Class Names, Method Function Names, Argument Types, and Documentatlon 102
Argument Passing Modes—the Client’s View 103
The Adopt Semantics : 106
Selecting the Correct Mode for Arguments 108
Function Return Values 109
Returning References from Functions 111
Writing Memory Safe Classes 112
Improving Performance 112
Client’s Responsibilities with Classes and Functions 113
Summary 114
Initialization and Garbage Collection within
0ooP 115
What is Initialization? 115
Initialization by Constructors 117
Rules To Be Followed with Embedded Ob]ects 124
Garbage Collection Issues 125

Garbage , 125



Dangling Reference
Remedies for Garbage Collection and Dangling Reference
Garbage Collection and Language Design
When is Garbage Created in C++?
When Does an Object Acquire Resources?
Garbage Collection In C++
Identity of Objects
Semantics of Object Copying
Semantics of a Simple Copy Operation
Semantics of Object Assignment
Assignment as an 1-value Operation
Semantics of Object Equality
Object Equality and Object Equivalence
Why Copy Control Is Needed?
A Semaphore Example
A License Server Example
A String Class Example
Analysis
The Copy-On-Write Concept
When to Use Reference Counting?
Summary of Copy-On-Write
Classes and Types
Summary

The Inheritance Concept
Basics of Inheritance
Meaning of the is-a Relationship
Effect of Inheritance Relationship
Direct and Indirect Base Classes
Polymorphic Substitution Principle
Initializing the Base Class Object
Extending Class Hierarchies with Inheritance
Some Basic Advantages of Inheritance
Dynamic Binding, Virtual Functions, and Polymorphism
Meaning of Dynamic Binding
Support for Dynamic Binding—Virtual Functions
Effect of Inheritance on Data Encapsulation
The Meaning of Polymorphism
Using Virtual Functions (Dynamic Binding) Effectively
The Concept of Overriding
Need for a Virtual Destructor -
Constructors and Virtual Functions
The Generalization-Specialization Concept
The Abstract (Deferred) Class Concept
Purpose of an Abstract Class :

A More Complete Example of Abstract Classes—The Game of Chess

The Power of Inheritance

125
126
127
129
130
130
132
136
137
142
145
145
147
149
150
152
154
160
161
167
168
169
170

171
172
186
187
187
187
191
195
197
198
201
202
204
206
207
208
210
214
215
215
219
224
232



Effective Code Reuse

Clients of an Abstract Base Class

Summary of Benefits of Inheritance

Perils of Inheritance and Dynamic Binding
How Dynamic Binding (Virtual Function) Is Implemented In C++
Cost of Virtual Functions
Dynamic Binding and Type Checking

Unnecessary Inheritance and Dynamic Binding
The Library Checkout System

Different Modes for Using Virtual Functions

Summary

The Concept of Multiple Inheritance
Simple Definition of Multiple Inheritance
The University Example
Code Reuse with Refinement
The Meaning of Multiple Inheritance Relationships
The MI Scenario
Resolving Name Conflicts in C++
Problem of Ambiguous Base Classes
Preliminary Benefits of Multiple Inheritance
Alternatives to Multiple Inheritance
First Alternative
Second Scenario
Repeated Inheritance
Solution to Repeated Inheritance
Sharing Objects with Virtual Base Classes in C-++
Benefits of Virtual Base Classes
New Problems Due to Virtual Base Classes
Comparing MI in Eiffel and C4++
General Problems with Inheritance
Using Mixin Classes for Adding Static Capabilities
Definition of a Mixin Class
‘When to Use Mixin Classes?
Designing for Dynamically Changing Situations
Design Flexibility of Role Playing Classes
How to Use Role Playing Classes?
Another Alternative for Managing Roles
Polymorphic Usage of TUniversityMember Objects
Changes Required to the Existing Classes
Mixin Classes vs Role Objects—Applicability
Private Derivation in C++
When to Use Private Derivation
Re-exporting Members of the Private Base Class
Alternative to Private Derivation—Containment
The Need for Private Derivation
A Very Useful Example of Mixin Classes and Private Derivation

233
236
237
238
240
240
241
242
242
254
255

257
258
258
262
264
265
266
270
271
271
272
274
276
279
279
282
282
287
290
291
291
296
296
302
302
311
312
313
314
316
319
321
322
324
327



Inheritance vs Containment
Summary

Selective Exports from Classes (Friend Functions)
What We Need
The C++ Scenario
Implications of the Friend Relationship
Applications of Friend Functions
Case I: Minimizing Heavy Interactions Between Classes
Case II: Overcoming Syntax Problems
Case III: Functions that Need to Communicate with More than One Class
The Advantage of Non-member Functions
Choosing Friend Functions vs Member Functions
Summary

The Concept of Operator Overloading
Difference Between Language Types and Programmer Defined Types
What Is an Overloaded Operator?
Why (Not) Operator Overloading—Pros and Cons
More Elegant Abstract Data Types
Convoluted Operator Overloading
Failure to Understand Precedence and Associativity Rules
Overloaded Operators in C++
Another Application for the ++ and — — operators
The Subscript Operator:operator [ ]
A More Sophisticated Operator—The Member Access Operator:QOperator ->
Operators as Friend Functions
Operators that Are Member Functions
Operators that Are Implemented as Non-member Functions
Why Do We Need Conversions?
Conversion Functions
Interactions Between Converting Constructors and Conversion Functions
Eliminating the Need for Temporary Objects
Returning Results from Operator Functions
The Assignment Operator
Summary

Generic Types
The Repeated Coding Problem
The Smart Solution—Generic Programming
Fundamentals of a Generic Type (Class)
What Happens When a New Template Class is Instantiated in C44-7
Generic Types and Code Duplication
Contract Between a Generic Class Implementor and Clients
Can This Be Considered Good Design?
Operators vs Member Functions in Generic Class Implementations
The Alternative Solution—Specialization of Generic Classes

333
334

336
337
337
340
343
343
349
361
362
365
366

367
367
370
371
372
372
373
376
380
382
387
395
396
398
402
402
405

411
416
416

417
417
424
427
429
433
434
439
441
443



10

Template Specializations
Specialization of a Teniplate Member Function
Another Alternative: Separating Comparison of Objects
What if One Can’t Specialize a Template Member Function?
Template Class Specialization
The Concept of Generic Functions
Instantiation of Template Classes and Member Functions in C++
Generic Types and Type Checking
Constrained and Unconstrained Genericity
Constraints on Template Arguments in C++
Specific Types as Template Arguments in C++
Default Values for Template Arguments
Enforcing Constraints on Template Arguments in C++
Generic Classes and Selective Exports
Inheritance and Generic Classes
Polymorphism and Generic Classes
Useful Applications of Inheritance with Generic Classes
The Singleton Approach
A General Technique for Controlling Object Creation
Implementing Counted Pointers
Minimizing Code Duplication with Template Objects
Memory Footprint of a Program
Schemes for Reducing Template Code Size
Template Classes and Source Code Protection
Template Classes in Shared (Dynamic) Libraries
Template Classes in Shared Libraries—Moultiple Instantiations Problems
Eliminating Multiple Instantiations in Shared Libraries
Linking with Existing Shared Libraries
Container Classes
Comparing Generic Types and Inheritance
Summary

Expecting the Unexpected

Why Should We Handle Error Conditions?
What’s Wrong With Error Codes?

‘What is the Alternative?

The C++ Exception Handling Model
How the C4+ Exception Mechanism Works?
Significance of the Try Block
Significance of the Throw Expression
Understanding the Dynamic Call Chain
Handling Muliiple Exceptions
Responsibilities of a Catch Block

The Exceptions Model in Eiffel

Merits and Drawbacks of the Eiffel and C++ Exceptions Models

Using C++ Exceptions Effectively

Creating Exception Hierarchies

446
448
449
451
455
462
463
467
468
469
470
473
476
481
483
484
485
487
496
498
498
510
510
513
515
516
517
518
319

520
520
521
522
523
524
526
526
528
530
531
532
536
538
3R



Ordering of Catch Handlers 541

Writing Exception Safe Functions 543
Architecting Exception Handling into Projects 545
‘When to Throw an Exception 545
Strategies for Successful Error Management in Pro;ects 547
A Function Is Not a Firewall 549
Designing Exception Hierarchies 549
Resource Management in an Exceptions Environment 552
Automating Resource Management 553
Generalizing the Resource Management Solution 556
Exceptions and Constructors 558
Returning Safe Resources from Functions 558
A Helper Class for Managing Arrays of Objects . 562
Cost of Automatic Garbage Collection 567
Partial Completion of Constructors 568
Creating a Safe Array Using Exceptions 568
Summary 574
Part II: Using Object-Oriented Programming Effectively
11 Mastering Data Abstraction 575
Hiding Implementation Details of an Abstraction 575
Advantages of Using Handles 579
Disadvantages of Using Handles 579
Using Pointers as Data Members (Lazy Evaluation) 584
Controlling Object Creation 586
Allowing Object Creation Using the new () Operator Only 586
Preventing Object Creation Using the new () Operator 589
Using Pointers and References Instead of Embedded Objects 589
Avoid Using Large Arrays as Automatic Variables (or Data Members) 590
Using Arrays of Objects and Arrays of Pointers to Objects 591
Prefer Objects Instead of Primitive Type Pointers for Data Members
and Return Values of Member Functions 593
Compatibility with C 596
Pay Attention to Implementation Alternatives: Object Size vs
Code Efficiency 598
Avoid Temporary Objects 601
Use the Copy to Initialize Objects 602
Using Proxy (or Surrogate) Objects Effectively 603
Proxy Objects to Facilitate Safe Sharing of Objects 604
Proxy Objects for Ease of Use - 605
Proxy Objects that are Stand-ins for Remote Objects 606
Smart Proxy Objects that Provide Additional Functionality 607
Proxies for Solving Syntactic/Semantic Problems 608
A General Subscript Proxy Technique 611
Use Simple Abstractions to Build More Complex Abstractions 613

Abstractions Must Allow Clients to Use a Class in Many Different Ways 614



12

13

Summary

Using Inheritance Effectively

Using Inheritance to Implement Elegant Menus and Commands
Supporting Different Types of Menus

Encapsulating Object Creation Details

The Concept of Virtual Constructors

Combining Virtual and Non-virtual Functions for Protocol Control

The Double Dispatching Concept

Designing and Implementing Container Classes

Designing to Deal with Different Containers

Implementing Homogeneous Container Classes Using Generic Programming

Design Goals
Advantages of Template-Based Homogeneous Containers
Disadvantages of Template-Based Containers
Implementing Heterogeneous Containers Using Pointer-Based
Homogenous Containers
Navigating Containers
Passive Iterators
Active Tterators
Iterators as Objects
Managing Collections and Iterators—Client’s View
Style 1. Create and Return an Iterator from the Container for
the User to Use
‘Style 2. Return a Container by Value that the User Can Manipulate
by Using Iterators
The C++ Standard Template Library (STL)
STL Containers
Iterators
Algorithms in STL
Summary
Implementation Code for TArray Container

Understanding the C++ Object Model
Efficient Implementation
How Objects are Represented in C-++

Classes without Any Virtual Functions

Member Functions

Static Data Members

Constructor Functions
Classes with Virtual Functions

Placement of the vtbl Pointer
Sharing Virtual Function Tables Across Shared Libraries
Virtual Functions and Multiple Inheritance (No Virtual Base Classes)
Virtual Base Classes

Member Access with Virtual Base Classes

Virtual Base Classes with Virtual Functions

616

617
617
623
624
626
629
638
645
647
659
660
665
666

667
669
670
673
676
682

683

683
685
686
687
687
690
691

701
701
701
702
702
703
704
705
706
708
709
715
715
7117



Implementation Support for RTTI (Run-Time Type Identification) 719

Object-Based and Object-Oriented Programming 720
References, Pointers, and Values 721
Assignment of References and Pointers 721

Copy Constructor 722
Responsibility of a Constructor 723
Responsibility of a Copy Constructor 726
Optimizations for Pass by Value and Return by Value of Objects 727

Pass by Value 727

Return by Value 729
Run-Time Initialization 732
Summary 732
Appendix ' 733
Bibliographical References and Recommended Reading 737

Index 741



