

INTERNATIONAL EDITION

PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING

THIRD EDITION

Suranaree University of Technology

31051000574638

G I O R G I O R I Z Z O N I

Contents

Chapter 1 Introduction to Electrical Engineering 1

- 1.1 Electrical Engineering 2
- 1.2 Electrical Engineering as a Foundation for the Design of Mechatronic Systems 4
- 1.3 Fundamentals of Engineering Exam Review 8
- 1.4 Brief History of Electrical Engineering 9
- 1.5 System of Units 10
- 1.6 Special Features of This Book 11

PART I CIRCUITS 11

Chapter 2 Fundamentals of Electric Circuits 15

- 2.1 Charge, Current, and Kirchhoff's Current Law 16
- 2.2 Voltage and Kirchhoff's Voltage Law 21
- 2.3 Ideal Voltage and Current Sources 23
 - Ideal Voltage Sources 24
 - Ideal Current Sources 25
 - Dependent (Controlled) Sources 25
- 2.4 Electric Power and Sign Convention 26
- 2.5 Circuit Elements and Their *i-v* Characteristics 29
- 2.6 Resistance and Ohm's Law 30
 - Open and Short Circuits 38
 - Series Resistors and the Voltage Divider Rule 39
 - Parallel Resistors and the Current Divider Rule 42
- 2.7 Practical Voltage and Current Sources 49
- 2.8 Measuring Devices 50
 - The Ohmmeter 50
 - The Ammeter 51
 - The Voltmeter 51
- 2.9 Electrical Networks 52
 - Branch 52
 - Node 55
 - Loop 55
 - Mesh 55

- Network Analysis 55
- Circuit Variables 56
- Ground 57

Chapter 3 Resistive Network Analysis 71

- 3.1 The Node Voltage Method 72
 - Nodal Analysis with Voltage Source 77
- 3.2 The Mesh Current Method 78
 - Mesh Analysis with Current Sources 82
- 3.3 Nodal and Mesh Analysis with Controlled Sources 84
 - Remarks on Node Voltage and Mesh Current Methods 86
- 3.4 The Principle of Superposition 86
- 3.5 One-Port Networks and Equivalent Circuits 89
 - Thévenin and Norton Equivalent Circuits 90
 - Determination of Norton or Thévenin Equivalent Resistance 91
 - Computing the Thévenin Voltage 95
 - Computing the Norton Current 99
 - Source Transformations 101
 - Experimental Determination of Thévenin and Norton Equivalents 104
- 3.6 Maximum Power Transfer 107
- 3.7 Nonlinear Circuit Elements 110
 - Description of Nonlinear Elements 110
 - Graphical (Load-Line) Analysis of Nonlinear Circuits 111

Chapter 4 AC Network Analysis 125

- 4.1 Energy-Storage (Dynamic) Circuit Elements 126
 - The Ideal Capacitor 126
 - Energy Storage in Capacitors 130
 - The Ideal Inductor 133
 - Energy Storage in Inductors 137
- 4.2 Time-Dependent Signal Sources 141
 - Why Sinusoids? 141
 - Average and RMS Values 142

4.3	Solution of Circuits Containing Dynamic Elements	145
	Forced Response of Circuits Excited by Sinusoidal Sources	146
4.4	Phasors and Impedance	148
	Euler's Identity	148
	Phasors	149
	Superposition of AC Signals	151
	Impedance	153
	The Resistor	153
	The Inductor	154
	The Capacitor	155
	Admittance	161
4.5	AC Circuit Analysis Methods	162
	AC Equivalent Circuits	166

Chapter 5 Transient Analysis 181

5.1	Introduction	181
5.2	Solution of Circuits Containing Dynamic Elements	183
5.3	Transient Response of First-Order Circuits	186
	Natural Response of First-Order Circuits	187
	Forced and Complete Response of First-Order Circuits	191
	Continuity of Capacitor Voltages and Inductor Circuits	192
	Complete Solution of First-Order Circuits	194
5.4	Transient Response of First-Order Circuits	203
	Deriving the Differential Equations for Second-Order Circuits	204
	Natural Response of Second-Order Circuits	205
	Overdamped Solution	208
	Critically Damped Solution	209
	Underdamped Solution	209
	Forced and Complete Response of Second-Order Circuits	210

Chapter 6 Frequency Response and System Concepts 231

6.1	Sinusoidal Frequency Response	232
6.2	Filters	238
	Low-Pass Filters	239
	High-Pass Filters	245
	Band-Pass Filters	248
	Decibel (db) or Bode Plots	257
6.3	Complex Frequency and the Laplace Transform	260

The Laplace Transform	263
Transfer Functions, Poles, and Zeros	267

Chapter 7 AC Power 281

7.1	Power in AC Circuits	282
	Instantaneous and Average Power	282
	AC Power Notation	284
	Power Factor	288
7.2	Complex Power	289
	Power Factor, Revisited	294
7.3	Transformers	308
	The Ideal Transformer	309
	Impedance Reflection and Power Transfer	311
7.4	Three-Phase Power	315
	Balanced Wye Loads	318
	Balanced Delta Loads	319
7.5	Residential Wiring; Grounding and Safety	322
7.6	Generation and Distribution of AC Power	325

PART II ELECTRONICS 336

Chapter 8 Semiconductors and Diodes 337

8.1	Electrical Conduction in Semiconductor Devices	338
8.2	The <i>pn</i> Junction and the Semiconductor Diode	340
8.3	Circuit Models for the Semiconductor Diode	343
	Large-Signal Diode Models	343
	Small-Signal Diode Models	351
	Piecewise Linear Diode Model	357
8.4	Practical Diode Circuits	360
	The Full-Wave Rectifier	360
	The Bridge Rectifier	362
	DC Power Supplies, Zener Diodes, and Voltage Regulation	364
	Signal-Processing Applications	370
	Photodiodes	377

Chapter 9 Transistor Fundamentals 391

9.1	Transistors as Amplifiers and Switches	392
9.2	The Bipolar Junction Transistor (BJT)	394
	Determining the Operating Region of a BJT	397
	Selecting an Operating Point for a BJT	399

9.3	BJT Large-Signal Model 407
	Large-Signal Model of the <i>n-p-n</i> BJT 407
9.4	Field-Effect Transistors 415
9.5	Overview of Enhancement-Mode MOSFETs 415
	Operation of the <i>n</i> -Channel Enhancement-Mode MOSFET 416
	<i>p</i> -Channel MOSFETs and CMOS Devices 421
9.6	Depletion MOSFETs and JFETs 423
	Depletion MOSFETs 423
	Junction Field-Effect Transistors 425
	Depletion MOSFET and JFET Equations 426

Chapter 10 Transistor Amplifiers and Switches 437

10.1	Small-Signal Models of the BJT 438
	Transconductance 441
10.2	BJT Small-Signal Amplifiers 443
	DC Analysis of the Common-Emitter Amplifier 446
	AC Analysis of the Common-Emitter Amplifier 453
	Other BJT Amplifier Circuits 457
10.3	FET Small-Signal Amplifiers 457
	The MOSFET Common-Source Amplifier 461
	The MOSFET Source Follower 465
10.4	Transistor Amplifiers 468
	Frequency Response of Small-Signal Amplifiers 468
	Multistage Amplifiers 470
10.5	Transistor Gates and Switches 472
	Analog Gates 473
	Digital Gates 473

Chapter 11 Power Electronics 495

11.1	Classification of Power Electronic Devices 496
11.2	Classification of Power Electronic Circuits 497
11.3	Voltage Regulators 499
11.4	Power Amplifiers and Transistor Switches 502
	Power Amplifiers 502
	BJT Switching Characteristics 504

	Power MOSFETs 505
	Insulated-Gate Bipolar Transistors (IGBTs) 508
11.5	Rectifiers and Controlled Rectifiers (AC-DC Converters) 508
	Three-Phase Rectifiers 511
	Thyristors and Controlled Rectifiers 512
11.6	Electric Motor Drives 518
	Choppers (DC-DC Converters) 518
	Inverters (DC-AC Converters) 523

Chapter 12 Operational Amplifiers 531

12.1	Amplifiers 532
	Ideal Amplifier Characteristics 532
12.2	The Operational Amplifier 533
	The Open-Loop Model 534
	The Operational Amplifier in the Closed-Loop Mode 535
12.3	Active Filters 553
12.4	Integrator and Differentiator Circuits 559
	The Ideal Differentiator 562
12.5	Analog Computers 562
	Scaling in Analog Computers 564
12.6	Physical Limitations of Op-Amps 569
	Voltage Supply Limits 569
	Frequency Response Limits 571
	Input Offset Voltage 574
	Input Bias Currents 575
	Output Offset Adjustment 576
	Slew Rate Limit 577
	Short-Circuit Output Current 579
	Common-Mode Rejection Ratio 580

Chapter 13 Digital Logic Circuits 599

13.1	Analog and Digital Signals 600
13.2	The Binary Number System 602
	Addition and Subtraction 602
	Multiplication and Division 603
	Conversion from Decimal to Binary 604
	Complements and Negative Numbers 606
	The Hexadecimal System 606
	Binary Codes 606
13.3	Boolean Algebra 610
	AND and OR Gates 610
	NAND and NOR Gates 617
	The XOR (Exclusive OR) Gate 619

13.4	Karnaugh Maps and Logic Design	620
	Sum-of-Products Realizations	627
	Product-of-Sums Realizations	627
	Don't Care Conditions	631
13.5	Combinational Logic Modules	634
	Multiplexers	634
	Read-Only Memory (ROM)	635
	Decoders and Read and Write Memory	638

Chapter 14 Digital Systems 647

14.1	Sequential Logic Modules	648
	Latches and Flip-Flops	648
	Digital Counters	655
	Registers	662
14.2	Sequential Logic Design	664
14.3	Microcomputers	667
14.4	Microcomputer Architecture	670
14.5	Microcontrollers	671
	Computer Architecture	672
	Number Systems and Number Codes in Digital Computers	674
	Memory Organization	675
	Operation of the Central Processing Unit (CPU)	677
	Interrupts	678
	Instruction Set for the MC68HC05 Microcontroller	679
	Programming and Application Development in a Microcontroller	680
14.6	A Typical Automotive Engine Microcontroller	680
	General Description	680
	Processor Section	681
	Memory	682
	Inputs	684
	Outputs	685

Chapter 15 Electronic Instrumentation and Measurements 689

15.1	Measurement Systems and Transducers	690
	Measurement Systems	690
	Sensor Classification	690
	Motion and Dimensional Measurements	691
	Force, Torque, and Pressure Measurements	691
	Flow Measurements	693
	Temperature Measurements	693

15.2	Wiring, Grounding, and Noise	695
	Signal Sources and Measurement System Configurations	695
	Noise Sources and Coupling Mechanisms	697
	Noise Reduction	698
15.3	Signal Conditioning	699
	Instrumentation Amplifiers	699
	Active Filters	704
15.4	Analog-to-Digital and Digital-to-Analog Conversion	713
	Digital-to-Analog Converters	714
	Analog-to-Digital Converters	718
	Data Acquisition Systems	723
15.5	Comparator and Timing Circuits	727
	The Op-Amp Comparator	728
	The Schmitt Trigger	731
	The Op-Amp Astable Multivibrator	735
	The Op-Amp Monostable Multivibrator (One-Shot)	737
	Timer ICs: The NE555	740
15.6	Other Instrumentation Integrated Circuits Amplifiers	742
	DACs and ADCs	743
	Frequency-to-Voltage, Voltage-to-Frequency Converters and Phase-Locked Loops	743
	Other Sensor and Signal Conditioning Circuits	743
15.7	Data Transmission in Digital Instruments	748
	The IEEE 488 Bus	749
	The RS-232 Standard	753

PART III ELECTROMECHANICS 66

Chapter 16 Principles of Electromechanics 767

16.1	Electricity and Magnetism	768
	The Magnetic Field and Faraday's Law	768
	Self- and Mutual Inductance	771
	Ampère's Law	775
16.2	Magnetic Circuits	779
16.3	Magnetic Materials and <i>B-H</i> Circuits	793
16.4	Transformers	795
16.5	Electromechanical Energy Conversion	799
	Forces in Magnetic Structures	800
	Moving-Iron Transducers	800
	Moving-Coil Transducers	809

Chapter 17 Introduction to Electric Machines 827

17.1 Rotating Electric Machines 828
Basic Classification of Electric Machines 828
Performance Characteristics of Electric Machines 830
Basic Operation of All Rotating Machines 837
Magnetic Poles in Electric Machines 837
17.2 Direct-Current Machines 840
Physical Structure of DC Machines 840
Configuration of DC Machines 842
DC Machine Models 842
17.3 Direct-Current Generators 845
17.4 Direct-Current Motors 849
Speed-Torque and Dynamic Characteristics of DC Motors 850
DC Drives and DC Motor Speed Control 860
17.5 AC Machines 862
Rotating Magnetic Fields 862
17.6 The Alternator (Synchronous Generator) 864
17.7 The Synchronous Motor 866
17.8 The Induction Motor 870
Performance of Induction Motors 877
AC Motor Speed and Torque Control 879
Adjustable-Frequency Drives 880

Find Chapter 19 on the Web
<http://www.mhhe.com/engcs/electrical/rizzoni>

Chapter 19 Introduction to Communication Systems

19.1 Introduction to Communication Systems
Information, Modulation, and Carriers
Communications Channels
Classification of Communication Systems
19.2 Signals and Their Spectra
Signal Spectra
Periodic Signals: Fourier Series
Non-Periodic Signals: The Fourier Transform
Bandwidth
19.3 Amplitude Modulation and Demodulation
Basic Principle of AM
AM Demodulation: Integrated Circuit Receivers
Comment on AM Applications
19.4 Frequency Modulation and Demodulation
Basic Principle of FM
FM Signal Models
FM Demodulation
19.5 Examples of Communication Systems
Global Positioning System
Sonar
Radar
Cellular Phones
Local-Area Computer Networks

Chapter 18 Special-Purpose Electric Machines 889

18.1 Brushless DC Motors 890
18.2 Stepping Motors 897
18.3 Switched Reluctance Motors 905
Operating Principles of SR Machine 906
18.4 Single-Phase AC Motors 908
The Universal Motor 909
Single-Phase Induction Motors 912
Classification of Single-Phase Induction Motors 917
Summary of Single-Phase Motor Characteristics 922
18.5 Motor Selection and Application 923
Motor Performance Calculations 923
Motor Selection 926

Appendix A Linear Algebra and Complex Numbers 933**Appendix B Fundamentals of Engineering (FE) Examination 941****Appendix C Answers to Selected Problems 955****Index 961**