Leaf Development and Canopy Growth

Edited by

Marchall

Bruce Marshall and Jeremy A. Roberts

Contents

1	The evolution of leaf form and function KARL J. NIKLAS			
	1.1	Introduction	1	
	1.2	The definition of a 'leaf'	2	
	1.3	Convergence or divergence?	4	
		Megaphylls and microphylls	5	
		The leaf-stem dichotomy	7	
	1.6	Computer simulations of the leaf-stem functional dichotomy	9	
	1.7	Phyllotactic patterns	16	
		Mechanical interactions between leaves and stems	23	
	1.9	Drag-reduction of the canopy	27	
	1.10	Concluding remarks	32	
	Refe	erences	32	
2	Pia	nts as self-organising systems	37	
	FEDERICO MAGNANI and JOHN GRACE			
	2.1	Introduction	37	
	2.2	Coordination of stomatal function at the leaf level	38	
	2.3	Nitrogen acclimation to light at the canopy level	39	
	2.4	Resource allocation: response to nutrient availability	41	
		Resource allocation: response to water relations	44	
		Sensory apparatus	47	
		2.6.1 Light	47	
		2.6.2 Gravity and mechanical sensing	48	
		2.6.3 Drought	49	
		2.6.4 Sensors and models	49	
	2.7	Emergent properties and top-down system analysis	50	
	2.8	Conclusions	52	
	Refe	erences	54	
3	Genetic analysis of leaf development and differentiation 59			
	TOSHI FOSTER and BRUCE VEIT			
	3.1	Introduction	59	
	3.2	Essential aspects of leaf organisation and development	60	
		The initiation of leaves	61	
		3.3.1 The role of the shoot apical meristem	62	
		3.3.2 Phyllotaxy	66	
		3.3.3 Determination of leaf initiation sites	67	
		3 3 4 Selection of leaf founder cell populations	70	

CONTENTS

	3.4		73			
		3.4.1 Surgical approaches to pattern formation	73			
		3.4.2 Analysis of proximal/distal patterning in maize	74			
		3.4.3 Adaxial/abaxial and lateral patterning of the leaf	75			
		Leaf morphogenesis	77			
		Compound leaves	79			
		Vascular patterning	82			
	3.8	Cellular differentiation	83			
		3.8.1 Vascular differentiation	84			
		3.8.2 Epidermal differentiation	84			
		3.8.3 Differentiation of ground tissues	85			
	3.9	Environmental regulation of leaf development and differentiation	86			
	3.1	0 Heterophylly in aquatic species	87			
	3.1	1 Heteroblastic development	87			
	3.1	2 Phase change	88			
	3.1	3 Prospects	90			
	Acl	knowledgements	91			
	Ref	erences	91			
4	Sp	atio-temporal variation of leaf growth, development				
	an	d function	96			
	A.	WALTER and U. SCHURR				
	4.1	Introduction	96			
		4.1.1 Conceptual framework for leaf growth analysis	96			
		4.1.2 Technical framework for leaf growth analysis	96 97			
	4.2	Growth of the total leaf area				
		Growth of the single leaf	99			
	4.4	Spatio-temporal analysis using digital image processing	101			
		4.4.1 Image sequence analysis	105			
		4.4.2 Determination of growth rate from digital image sequences	105			
		4.4.3 Diurnal variation of the spatial pattern of growth rate	106			
	4.5	Cytological development	110			
	4.6	Parallel development of morphology and function	111			
	4.7	Spatio-temporal analysis: prospects and future tasks	113			
	Ack	nowledgements	113			
		èrences	115			
			115			
5	Pla	Plant architecture and light signals 118				
	HA	ARRY SMITH				
	5.1	Introduction	118			
	5.2		118			
	5.3	Information in the radiation environment	118			
		5.3.1 Solar radiation	120			
		5.3.2 Daylight spectra				
		5.3.3 Interaction with vegetation	121			
		5.3.4 Reflection signals	121			
	5.4	Phytochromes and light signal perception	122			
		5.4.1 Absorption spectra, photoconversions and photoequilibria	122			
			122			

CONTENTS

хi

	5.5	Phytochrome response modes	123
		5.5.1 Responses to the light pulses	123
		5.5.2 Responses to continuous irradiation	124
	5.6	Phytochromes in the natural environment	125
		5.6.1 Pfr/P vs R:FR	125
		5.6.2 Phytochromes as proximity sensors	126
	5.7	Nature of shade avoidance	129
		5.7.1 Shade avoidance happens quickly	131
	5.8	Roles of individual phytochromes in shade avoidance	131
		5.8.1 Evidence from mutants	132
		Ecology of shade avoidance	133
		Shade avoidance and canopy architecture in the field	134
	5.11	Application of the shade avoidance syndrome	136
		5.11.1 Genetic engineering of shade avoidance	136
		5.11.2 Transgenic suppression of shade avoidance in the field	139
		The future	140
	Refe	erences	141
6	De	velopment of the photosynthetic apparatus	145
		NDREW N. WEBBER	
	6.1	Introduction	145
		Overview of the photosynthetic apparatus	146
		Chloroplast gene expression	148
		6.3.1 Messenger ribonucleic acid (mRNA) synthesis and stability	148
		6.3.2 Translation	151
		6.3.3 Coordinated translation	152
	6.4	Chloroplast protein import	153
		6.4.1 Import into the stroma	153
		6.4.2 Targeting to thylakoids	155
	6.5	Assembly of photosynthetic protein complexes	156
		6.5.1 Non-structural protein factors required for assembly	157
		6.5.2 Proteolytic turnover of protein complexes	158
	6.6	Control of chloroplast division	159
	6.7	Environmental light effects	159
		6.7.1 Photoreceptive molecules and mechanisms .	161
		6.7.2 Repair of photodamage	163
	Ref	erences	163
7	Nit	rogen utilisation and the photosynthetic system	171
		ELS P. R. ANTEN, KOUKI HIKOSAKA	
		I TADAKI HIROSE	
	71	Introduction	171
		Photosynthesis-nitrogen relationships at leaf level	171
	2	7.2.1 Photosynthesis-nitrogen relationship: physiological basis	172
		7.2.1 Nitrogen partitioning among photosynthetic components: acclimation	172
		of the photosynthetic apparatus	175
		7.2.3 Optimisation of absolute nitrogen content per unit leaf area	179
	7.3	Optimal nitrogen distribution	181

260

9.4.2 Structural responses to gaps

CONTENTS

		CONTENTS	xiii
		9.4.3 Seed germination in gaps	263
	9.5	Canopy dynamics	264
		9.5.1 Community regeneration	264
		9.5.2 Community succession	265
		9.5.3 Species diversity	267
	9.6	Gap models	268
		9.6.1 Individual-based patch models	268
		9.6.2 Cellular automaton models	270
		9.6.3 Applications	270
		nowledgement	272
	Refe	èrences	272
10	Pla	280	
	G.	R. SQUIRE	
	10.1	Introduction	280
	10.2	281	
10.2.1 Investment and return		10.2.1 Investment and return	281
		10.2.2 Season and space	285
		10.2.3 The complexity of more species and traits	288
	10.3	3. Individuals in canopies	289
		10.3.1 Time-evolution of trait space	290
		10.3.2 Trade-offs between vegetative and reproductive states	295
		10.3.3 Trait space and genetic diversity	296
	10.4	1. Coexistence of forms and canopy properties	298
		10.4.1 Coexistence in canopies	298
		10.4.2 Diversity and canopy properties	301
		5 Concluding remarks	306
		cnowledgements	307
	Refe	erences	307
Ind	lex		310