
POLYMER VISCOELASTICITY

STRESS AND STRAIN IN PRACTICE

EVARISTO RIANDE RICARDO DÍAZ-CALLEJA MARGARITA G. PROLONGO ROSA M. MASEGOSA CATALINA SALOM

Contents

Prefa	ice	jii
	;	;
1 S	Structure of Polymers	1
1.1	Introduction: Types of Polymers and Classification	1
1.2	Polymerization Processes	7
1.3	Molecular Weight and Molecular Weight Distribution	10
1:4	Configuration in Polymers	13
1.5	Conformational States in Polymers	16
1.6	Statistical Coil	18
	Problem Sets	25
	References	28
2 (Crystalline and Amorphous States in Polymers	29
2.1	Introduction: Crystalline and Amorphous Regions in	
	Polymers	29
2.2	Factors Determining the Crystallinity of Polymers	32
2.3	Crystal Structures of Polymers	. 33
2.4	Crystalline Morphology	37
2.5	Crystallization	43
2.6	Melting	46
2:7	Polymers in the Liquid Crystal State	51
2.8	Glassy State	57
2.9	Phenomenology of the Glass Transition	58

vii

viii Contents

2.10	Glass Transition and Free Volume	62
2.11	Factors Affecting the Glass Transition of Polymers	66
	Problem Sets	76
	References	83
3 R:	ubber Elasticity	85
3.1	Introduction	85
3.2	Thermodynamic Treatment	88
3.3	Statistical Treatment •	93
3.4	Modifications to Simple Statistical Theory—Non-Gaussian	
	Statistics	106
3.5	Swelling of Polymer Networks	109
3.6	Elastomers in Service	111
	Problem Sets	132
	References	139
4 S1	tunco Cancin Dalatiana for Ideal Calida and Ideal Ideal	1 40
4.1	tress-Strain Relations for Ideal Solids and Ideal Liquids Ideal Solids and Liquids: Constitutive Equations	140
4.1	Stress Tensor	140 143
4.3	The Second Law of Dynamics	145
4.4	Strain Tensor	147
4.5	Compatibility Equations	151
4.6	Effect of Symmetry on the Relationships Between the Stress	131
· -T. U	and Strain Tensors in Ideal Elastic Systems	152
4.7	Generalized Stress-Strain Hooke's Law for Isotropic Solids	162
4.8	Navier Equations	167
4.9	Generalized Strain-Stress Relationships for Ideal Elastic	107
7.,,	Systems	170
4.10	•	172
4.11	Viscosity of Ideal Liquids	175
	Problem Sets	177
	References	195
	inear Viscoelasticity and Viscoelastic Functions	196
5.1	Viscoelasticity	196
5.2	Linear Viscoelasticity—Response of Materials to Transient	4.5.0
e 2	Experiments	198
5.3	Boltzmann Superposition Principle in Creep Experiments	207
5.4	Memory Effects in Creep Experiments	212
5.5	Boltzmann Superposition Principle in Relaxation Experiments	214

Contents ix

5.6	Memory Function in Relaxation Experiments	216
5.7	Ramp Experiments	217
5.8	Laplace Transform Relationships Between Transient	
	Relaxation Moduli and Transient Compliance Functions	218
5.9	Generalization of the Superposition Principle	221
5.10	Generalized Stress-Strain Relationships in the Frequency	
	Domain	226
5.11	Generalized Stress-Strain Relationships for Viscoelastic	
	Systems with Any Degree of Symmetry	227
	Problem Sets	228
	References	237
6 D	ynamic Viscoelastic Functions	238
6.1	Introduction	238
6.2	Dynamic Relaxation Functions	239
6.3	Transformation of Relaxation Functions from the Frequency	
	Domain to the Time Domain and Vice Versa	242
6.4	Complex Viscosity	242
6.5	Dissipated Energy in Dynamic Relaxation Experiments	243
6.6	Dynamic Creep Compliance Functions	244
6.7	Transformation of Compliance Functions from the Frequency Domain to the Time Domain and Vice Versa for Viscoelastic	
	Solids ;	245
6.8	Dissipated Energy in Dynamic Creep Experiments	249
6.9	Analysis of Complex Creep Compliance Functions at Low	
	Frequencies	250
6.10	Zero Shear Rate Viscosity and Steady-State Compliance	
	Expressed in Terms of Viscoelastic Functions	252
6.11	Krönig-Kramers Relationships	253
6.12	Other Dynamic Viscoelastic Functions	255
	Problem Sets	257
	References	270
7 E	xperimental Determination of Viscoelastic Properties	271
7.1	Introduction	272
7.2	Experimental Determination of Dynamic Viscoelastic	
	Properties	273
7.3	Torsion Pendulum	274
7.4	Corrections in the Determination of $G^*(\omega)$ from Free	
	Oscillations in Shear	279
7.5	Forced Oscillations	280

x Contents

7.6	Secondary Effects in Torsion	280
7.7	Effective Sample Length	283
7.8	Dynamic Mechanical Analysis by Transverse Flexion	285
7.9	Response of a Viscoelastic Rod to an Instantaneous Stimulus	
	(Free Oscillations)	290
7.10	Determination of the Corrections in the Viscoelastic	
	Functions Due to Clamping	292
7.11	Resonance Instruments	294
7.12	Wave Propagation	294
7.13	Experimental Determination of Static Viscoelastic Properties	296
7.14	Torsional Creep	296
7.15	Tensile Creep	298
7.16	Stress Relaxation	299
	Problem Sets	300
	References	304
	iscoelastic Behavior of Polymers Above Tg	306
8.1	Time-Temperature Correspondence Principle	306
8.2	Prediction of the Shift Factors for Viscoelastic Liquids	32 1
8.3	Prediction of the Shift Factors for Viscoelastic Solids	322
8.4	Influence of Temperature on Horizontal Shift Factors	323
8.5	Effect of Pressure on the Viscoelastic Response	327
8.6	Differentiation of Regions in the Master Curves of the	
	Viscoelastic Functions	327
8,7	Influence of Diluents on the Viscoelastic Behavior of	
•	Polymers	339
8.8	Effects of Cross-Linking on the Viscoelastic Functions	343
	Problem Sets	348
	References	357
9 R	etardation and Relaxation Spectra	359
9.1	Introduction	359
9.2	Formulation of Transient and Nontransient Relaxation	
	Moduli in Terms of Retardation Spectra	360
9.3	Formulation of Transient and Nontransient Compliance	
	Functions in Terms of Retardation Spectra	362
9.4	Important Inequalities Among Viscoelastic Functions	365
9.5	Determination of Viscosity and Steady-State (Equilibrium)	
	Compliance from Relaxation and Retardation Spectra	366
9.6	Comparison of Retardation and Relaxation Times	368

Contents xi

9.7	Determination of Spectra from Viscoelastic Functions Using	
	First-Order Approximations	371
9.8	Approximations of Higher Order	375
9.9	Experimental Retardation and Relaxation Spectra	378
9.10	Approximate Relationships Between Viscoelastic Functions	383
	Problem Sets	384
	References	393
10 Vi	iscoelastic Models	394
10.1	Introduction	394
10.2	Maxwell's Model	395
10.3	The Kelvin-Voigt Model	<i>39</i> 8
10.4	Three-Element Standard Solid	400
10.5	Burgers Model	404
10.6	Maxwell and Kelvin-Voigt Generalized Models	406
10.7	Ladder Models	408
10.8	Distributed Constants Models	409
	Problem Sets	413
	References	422
11 M	Iolecular Models of Viscoelastic Polymers	423
11.1	Concentration Regimes	423
11.2	Isolated Chains as Hookean Elements	425
11.3	Spring-Bead Model: Rouse Theory	425
11.4	Spring-Bead Model: Zimm Theory	428
11.5	Tube Model	430
11.6	Polydispersity and the Tube Model	434
11.7	Rouse Dynamics: Viscosity and Steady-State Compliance for	
	Low Molecular Weight Chains in the Melt	434
11.8	Reptation Dynamics: Viscosity and Steady-State Compliance	
	for High Molecular Weight Chains in the Melt	436
11.9	Comparison of Theoretical and Experimental Viscoelastic	
	Results	439
11.10	Friction Coefficient	440
11.11	Concentration Dependence of Viscoelastic Functions in the	
	Semidilute and Concentrated Regimes	443
11.12	Branched Polymers	446
	Problem Sets	447
	References	452

xii Contents

12 V	iscoelasticity of Glassy and Semicrystalline Polymers	454
12.1	General Considerations	454
12.2	Relaxations in the Frequency Domain at Temperatures	
	Slightly Higher than T _e	457
12.3	Topology of the Dynamics in the Vicinity of the	
	Glass-Transition Temperature	460
12.4	Viscoelastic Functions for Glassy Systems in the Frequency	
	Domain	463
12.5	Dispersions in the Glassy State and the Glass Transition	464
12.6	Molecular Cooperativity in the Glass Transition	468
12.7	Structural Recovery in the Glassy State: Aging	473
12.8	Memory Effects and Physical Aging	474
12.9	Influence of Physical Aging on the Viscoelastic Functions:	
	Time-Aging Time Correspondence Principle	478
12.10	Nonlinear Behavior in Aging	482
12.11	Final Remarks on Aging Processes	483
12.12	Relaxation Behavior of Semicrystalline Polymers: General	
	Considerations	485
12.13	General Features of Crystalline Polymers	494
12,14	Time-Temperature Correspondence Principle	496
12.15	Modeling the Viscoelastic Behavior of Crystalline Polymers	496
	Problem Sets	498
	References	507
13 F	low Behavior of Polymer Melts and Solutions	509
13.1	Introduction	510
13.2	Constitutive Equations	510
13.3	Second-Order Fluids in Simple Shearing Flow	515
13.4	Normal Stresses	517
13.5	Rheometry	518
13.6	Intrinsic Viscosity of Polymers	524
13.7	Flow Through a Slit	529
13.8	Sources of Error in Capillary and Slit Flows	531
13.9	Coaxial Cylinder: Couette Flow	536
13.10	Cone-Plate Viscometers	539
13.11		541
13.12	Experimental Determination of Normal Stresses. Coaxial	J 11
	Cylinders	542
13.13	Factors Governing the Non-Newtonian Behavior of Polymers	546
13.14		550
13.15		552

Contents	xiii
----------	------

13.16	Influence of Diluents and Plasticizers, Blends, and Fillers on	
	Flow	553 557
	Parameters Influencing the First Normal Stress Difference	558
	Die Swelling	560
	Melt Index	562
	Thixotropy and Rheopexy	563
13.21		568
	Problem Sets	579
	References	517
14 V	ield Crazing and Fracture	582
14.1	Introduction: Ductile and Brittle Behavior	582
14.2		584
	Crazing	602
14.4		613
17.7	Problem Sets	642
	References	651
15 D	Addison of Thelemone	653
	teinforced Polymers	653
15.1	Introduction Polymen Matrices	655
15.2	•	664
15.3		670
15.4	Mechanical Properties of Unidirectional Composites	672
	Laminates	681
15.7		684
13.7	Problem Sets	690
	References	695
16 N	Multiaxial Analysis of Linear Viscoelastic Stress	696
16.1	Introduction	697
16.2	Integral Formulation of Viscoelastic Problems	697
16.3	Differential Form for the Constitutive Stress-Strain	701
	Relationship	701
16.4	Constitutive Equations in Differential Form for Multiaxial	702
	Tension States	703
16.5	Thermoviscoelasticity	706
16.6	Special Problems in Structural Linear Viscoelasticity	708
16.7	Formulation and Classification of the Boundary Problems in Viscoelasticity	708

xiv Contents

16.8	Applicability of the Correspondence Principle. Quasi-Static	
	and Dynamic Problems	709
16.9	Superposition and Saint Venant Principles	710
16.10	Problems with Special Symmetries	710
16.11	The Dynamic Problem	716
16.12	Plane Strain Problems	721
16.13	Plane Stress Problems	727
16.14	Indentation and Impact Problems	735
16.15	Roller Ball Indentation	740
16.16	Wave Propagation in Viscoelastic Materials	748
	Problem Sets	754
	References	767
17 FI	exion and Torsion of Viscoelastic Beams and Rods 📑	769
17.1	Introduction	770
17.2	Beam Bending: Preliminary Hypotheses and Stress Tensor	770
17.3	Bending Moment	772
17.4	Radius of Curvature	772
17.5	Momentum and Force Balances in Beams	775
17.6	Indentation of a Clamped Beam	776
17.7	Shear Stress Analysis in Elastic Beams	779
17.8	Shear Strain Analysis	783
17.9	Viscoelastic Beams	788
17.10	Transverse Vibrations in Viscoelastic Beams	789
17.11	Thermal Effects on Transverse Vibrations	808
17.12	Torsion of Viscoelastic Rods	816
	Displacement and Strain Tensor in Torsion	816
17.14	Stress Tensor in Torsion	818
17.15	Equilibrium Equations for Torsion	819
	Boundary Conditions	820
	Torsion Function Found by Separation of Variables	821
	Moment of Torque	822
17.19	Motion and Boundary Condition Equations	824
17.20	Analysis of Torsional Oscillations Using an Elastic Auxiliary	
	Element	832
	Problem Sets	836
	References	864
Аррег	ndix	866
	Laplace Transformation	866
	Properties of the Lanlace Transformation	867

Contents	χV

A.3 ·	Inverse of the Laplace Transformation	867
A.4	Carson Transformation	868
A.5	Fourier Transformation	86 8
A.6	Stieltjes Transformation	869
A.7	Table of Laplace Transformations	869
A.8	Reference	869
Index	x	871