ELEMENTARY LINEAR ALGEBRA A MATRIX APPROACH ## **SPENCE** Suranaree University of Technology 31051000612354 FRIEDBERG ## Contents | | Preface ix
To the Student xiii | | |---|--|-------| | 1 | Matrices, Vectors, and Systems of Linear Equations | 1 | | | 1.1 Matrices and Vectors 1 1.2 Linear Combinations, Matrix-Vector Products, and Special Matrices 11 1.3 Systems of Linear Equations 23 1.4 Gaussian Elimination 35 1.5* Applications of Systems of Linear Equations 50 1.6 The Span of a Set of Vectors 59 1.7 Linear Dependence and Linear Independence 68 Chapter 1 Review Exercises 79 | | | 2 | Matrices and Linear Transformations | 83 | | | 2.1 Matrix Multiplication 83 2.2* Applications of Matrix Multiplication 98 2.3 Invertibility and Elementary Matrices 113 2.4 The Inverse of a Matrix 126 2.5* The LU Decomposition of a Matrix 136 2.6 Linear Transformations and Matrices 150 2.7 Composition and Invertibility of Linear Transformation Chapter 2 Review Exercises 172 | s 160 | | 3 | Determinants | 175 | 3.1 Cofactor Expansion 175 3.2 Properties of Determinants 185 Chapter 3 Review Exercises 196 | viii | Contents | | | |----------|--------------------------------|--|-----| | 4 | Subspaces and Their Properties | | 199 | | | | 4.1 Subspaces 199 4.2 Basis and Dimension 211 4.3 The Dimensions of Subspaces Associated with a Matrix 4.4 Coordinate Systems 228 4.5 Matrix Representations of Linear Operators 239 Chapter 4 Review Exercises 248 | 221 | | <u>5</u> | Eigenvalues, Eige | nvectors, and Diagonalization | 251 | | | | 5.1 Eigenvalues and Eigenvectors 251 5.2 The Characteristic Polynomial 259 5.3 Diagonalization of Matrices 270 5.4 Diagonalization of Linear Operators 284 5.5* Applications of Eigenvalues 291 Chapter 5 Review Exercises 308 | | | 6 | Orthogonality | | 311 | | | | 6.1 The Geometry of Vectors 311 6.2 Orthogonal Vectors 321 6.3 Least-Squares Approximation and Orthogonal Projection Matrices 335 6.4 Orthogonal Matrices and Operators 345 6.5 Symmetric Matrices 355 6.6 Singular Value Decomposition 364 6.7 Rotations of R³ and Computer Graphics 378 Chapter 6 Review Exercises 394 | | | 7 | Vector Spaces | | 397 | | | | 7.1 Vector Spaces and Their Subspaces 397 7.2 Dimension and Isomorphism 406 7.3 Linear Transformations and Matrix Representations 418 7.4 Inner Product Spaces 430 Chapter 7 Review Exercises 444 | | | | | Appendix: Complex Numbers | 447 | | | | References | 451 | | | | Answers to Odd-Numbered Exercises | 453 | | | | Index | 475 |