MECHANICS of MATERIALS

R.C. HIBBELER

FOURTH EDITION

CONTENTS

PREFACE xi

1	
STR	ESS 3
1.3 1.4 1.5	Introduction 3 Equilibrium of a Deformable Body 4 Stress 22 Average Normal Stress in an Axially Loaded Bar 24 Average Shear Stress 32 Allowable Stress 48
2	
2.1	AAIN 67 Deformation 67 Strain 68
3	
ME	CHANICAL PROPERTIES OF MATERIALS 83
3.3 3.4	The Tension and Compression Test 83 The Stress-Strain Diagram 85 Stress-Strain Behavior of Ductile and Brittle Materials 89 Hooke's Law 92 Strain Energy 94
	Poisson's Ratio 104

3.8 Failure of Materials Due to Creep and Fatigue 109

1	ı
/-	Ţ

Avi	AT	LOAD	117
ДΝ	AL.	LAJAD	11/

4.1	Saint-Venant's Principle 117	
4.2	#11 .a == 4	120
4.3	Principle of Superposition 133	
4.4	Statically Indeterminate Axially Loaded Member 13	34
4.5	The Force Method of Analysis for Axially Loaded	
	Members 140	
4.6	Thermal Stress 148	
4.7	Stress Concentrations 156	
*4.8	Inelastic Axial Deformation 162	
*4.9	Residual Stress 167	
_	,	
5		
-		
Tors	ION 177	
5.1	Torsional Deformation of a Circular Shaft 177	
5.2	The Torsion Formula 178	
5.3	Power Transmission 189	
5.4	Angle of Twist 198	
5.5		10
*5.6	Statically Indeterminate Torque-Loaded Members 2 Solid Noncircular Shafts 220	13
*5.7		•
5.8		23
*5.9	Stress Concentration 234 Inelastic Torsion 237	
*5.10	Residual Stress 244	
_		
6		

BEND	DING 255	

0.1	Sne	ar	ana	M	\mathbf{om}	ent .	Diagra	ams	255
	_								

- Graphical Method for Constructing Shear and Moment 6.2 Diagrams 264
- Bending Deformation of a Straight Member 282 6.3
- 6.4 The Flexure Formula 286
- 6.5 Unsymmetric Bending 304
- *6.6 Composite Beams 315
- *6.7 Reinforced Concrete Beams 322
- *6.8 Curved Beams 324
 - Stress Concentrations 334 6.9
- *6.10 Inelastic Bending 343
- *6.11 Residual Stress 352

_
7
•
•
,

$\mathbf{T}_{\mathbf{p}}$	ANSVERS	SE SHEAR	363
IК	ANSVERS	NE JHEAR	.50.3

- 7.1 Shear in Straight Members 363
- 7.2 The Shear Formula 365
- 7.3 Shear Stresses in Beams 366
- 7.4 Shear Flow in Built-up Members 382
- 7.5 Shear Flow in Thin-Walled Members 391
- *7.6 Shear Center 396

8

COMBINED LOADINGS 409

- 8.1 Thin-Walled Vessels 409
- 8.2 State of Stress Caused by Combined Loadings 416

9

Stress Transformation 439 🗎

- 9.1 Plane-Stress Transformation 439
- 9.2 General Equations of Plane-Stress Transformation 444

476

- 9.3 Principal Stresses and Maximum In-Plane Shear

 Stress 448
- 9.4 Mohr's Circle—Plane Stress 462
- 9.5 Stress in Shafts Due to Axial Load and Torsion 471
- 9.6 Stress Variations Throughout a Prismatic Beam 472
- 9.7 Absolute Maximum Shear Stress 478

10

STRAIN TRANSFORMATION 489

- 10.1 Plane Strain 489
- 10.2 General Equations of Plane-Strain Transformation 491
- *10.3 Mohr's Circle—Plane Strain 498
- *10.4 Absolute Maximum Shear Strain 505
 - 10.5 Strain Rosettes 508
 - 10.6 Material-Property Relationships 512
- *10.7 Theories of Failure 524

1		1	1	
1	_			_

DESIGN OF BEAMS AND SHAFTS 539

- 11.1 Basis for Beam Design 539
- 11.2 Prismatic Beam Design 54
- *11.3 Fully Stressed Beams 554
- *11.4 Shaft Design 558

12

DEFLECTIONS OF BEAMS AND SHAFTS 569

- 12.1 The Elastic Curve 569
- 12.2 Slope and Displacement by Integration 573
- *12.3 Discontinuity Functions 590
- ↑ *12.4 Slope and Displacement by the Moment-Area
 Method 600
 - 12.5 Method of Superposition 614
 - 12.6 Statically Indeterminate Beams and Shafts 622
 - 12.7 Statically Indeterminate Beams and Shafts—Method of Integration 622
 - *12.8 Statically Indeterminate Beams and Shafts—Moment-Arèa Method 628
 - **12.9** Statically Indeterminate Beams and Shafts—Method of Superposition 634

13

Buckling of Columns 649

- 13.1 Critical Load' 649
- 13.2 Ideal Column with Pin Supports 652
- 13.3 Columns Having Various Types of Supports 658
- *13.4 The Secant Formula 669
- *13.5 Inelastic Buckling 677
- *13.6 Design of Columns for Concentric Loading 683
- *13.7 Design of Columns for Eccentric Loading 694

ENERGY	METHODS	705
LINENUI	MILLITORS	<i>,</i> 00

14.1 External Work and Strain Energy 7	4.1	Work and Strain	n Energy	705
--	-----	-----------------	----------	-----

- 14.2 Elastic Strain Energy for Various Types of Loading 710
- 14.3 Conservation of Energy 724
- 14.4 Impact Loading 730
- *14.5 Principle of Virtual Work 740
- *14.6 Method of Virtual Forces Applied to Trusses 744
- *14.7 Method of Virtual Forces Applied to Beams 752
- *14.8 Castigliano's Theorem 762
- *14.9 Castigliano's Theorem Applied to Trusses 764
- *14.10 Castigliano's Theorem Applied to Beams 768

A

GEOMETRIC PROPERTIES OF AN AREA 775

- A.1 Centroid of an Area 775
- A.2 Moment of Inertia for an Area 778
- A.3 Product of Inertia for an Area 782
- A.4 Moments of Inertia for an Area about Inclined Axes 784
- A.5 Mohr's Circle for Moments of Inertia 786

B

GEOMETRICAL PROPERTIES OF STRUCTURAL SHAPES 792

\mathbf{C}

SLOPES AND DEFLECTIONS OF BEAMS 800

D

REVIEW FOR THE FUNDAMENTALS OF ENGINEERING EXAM 802

Answers 822

INDEX 844