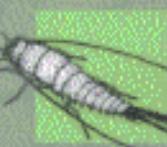


THE INSECTS

An Outline of Entomology


SECOND EDITION

Suanseee University of Technology

31051000614392

P. J. GULLAN & P. S. CRANSTON

Contents

List of colour plates, x

Preface to the second edition, xiii

Preface and acknowledgements for first edition, xv

1 The importance and diversity of insects, 1

1.1 What is entomology?, 2

1.2 The importance of insects, 2

1.3 Insect biodiversity, 4

1.3.1 The described taxonomic richness of insects, 4

1.3.2 The estimated taxonomic richness of insects, 4

1.3.3 The location of insect species richness, 5

1.3.4 Some reasons for insect species richness, 6

1.4 Insect biogeography, 8

1.5 Naming and classification of insects, 9

1.6 Insects as food, 11

1.6.1 Insects as human food: entomophagy, 11

1.6.2 Insects as feed for domesticated animals, 14

2 External anatomy, 15

2.1 The cuticle, 16

2.1.1 Colour production, 21

2.2 Segmentation and tagmosis, 22

2.3 The head, 24

2.3.1 Mouthparts, 25

2.3.2 Cephalic sensory structures, 30

2.4 The thorax, 32

2.4.1 Legs, 33

2.4.2 Wings, 36

2.5 The abdomen, 39

2.5.1 Terminalia, 40

3 Internal anatomy and physiology, 45

3.1 Muscles and locomotion, 46

3.1.1 Muscles, 46

3.1.2 Muscle attachments, 48

3.1.3 Crawling, wriggling, swimming and walking, 49

3.1.4 Flight, 50

3.2 The nervous system and co-ordination, 53

3.3 The endocrine system and the function of hormones, 55

3.3.1 Endocrine centres, 55

Neurosecretory cells, 55

Corpora cardiaca, 55

Prothoracic glands, 56

Corpora allata, 56

3.3.2 Hormones, 58

3.4 The circulatory system, 58

3.4.1 Haemolymph, 59

3.4.2 Circulation, 60

3.4.3 Protection and defence by the haemolymph, 61

3.5 The tracheal system and gas exchange, 62

3.5.1 Diffusion and ventilation, 64

3.6 The gut, digestion and nutrition, 66

3.6.1 Structure of the gut, 66

3.6.2 Saliva and food ingestion, 70

3.6.3 Digestion of food, 71

3.6.4 The fat body, 72

3.6.5 Nutrition and microorganisms, 73

3.7 The excretory system and waste disposal, 74

3.7.1 The Malpighian tubules and rectum, 74

3.7.2 Nitrogen excretion, 76

3.8 Reproductive organs, 78

3.8.1 The female system, 78

3.8.2 The male system, 80

4 Sensory systems and behaviour, 83**4.1 Mechanical stimuli, 84**

- 4.1.1 Tactile mechanoreception, 84
- 4.1.2 Position mechanoreception (proprioceptors), 84
- 4.1.3 Sound reception, 85
 - Non-tympanal vibration reception, 86
 - Tympanal reception, 88
- 4.1.4 Sound production, 91

4.2 Thermal stimuli, 93

- 4.2.1 Thermoreception, 93
- 4.2.2 Thermoregulation, 93
 - Behavioural thermoregulation (ectothermy), 94
 - Physiological thermoregulation (endothermy), 94

4.3 Chemical stimuli, 95

- 4.3.1 Chemoreception, 95
- 4.3.2 Semiochemicals: pheromones, 96
 - Sex pheromones, 99
 - Aggregation pheromones, 100
 - Spacing pheromones, 101
 - Trail-marking pheromones, 101
 - Alarm pheromones, 101
- 4.3.3 Semiochemicals: kairomones, allomones and synomones, 102
 - Kairomones, 102
 - Allomones, 102
 - Synomones, 103

4.4 Insect vision, 103

- 4.4.1 Dermal detection, 103
- 4.4.2 Stemmatia, 104
- 4.4.3 Ocelli, 104
- 4.4.4 Compound eyes, 106
- 4.4.5 Light production, 107

4.5 Insect behaviour, 109**5 Reproduction, 111**

- 5.1 Bringing the sexes together, 112
- 5.2 Courtship, 114
- 5.3 Sexual selection, 114
- 5.4 Copulation, 116
- 5.5 Diversity in genitalic morphology, 121
- 5.6 Sperm storage, fertilization and sex determination, 124
- 5.7 Sperm competition, 125
- 5.8 Oviparity (egg-laying), 126

5.9 Ovoviparity and viviparity, 132**5.10 Atypical modes of reproduction, 132**

- 5.10.1 Parthenogenesis, paedogenesis and neoteny, 132
- 5.10.2 Hermaphroditism, 133
- 5.10.3 Polyembryony, 133
- 5.10.4 Sex ratio distortion by endosymbionts, 134

5.11 Physiological control of reproduction, 134**5.11.1 Vitellogenesis and its regulation, 136****6 Insect development and life histories, 139****6.1 Growth, 140****6.2 Life-history patterns and phases, 141****6.2.1 Phases in insect ontogeny, 143****Embryonic phase, 143****Larval or nymphal phase, 148****Metamorphosis, 149****Imaginal or adult phase, 151****6.3 Process and control of moulting, 152****6.4 Volitinism, 155****6.5 Diapause, 156****6.6 Dealing with environmental extremes, 157****6.6.1 Cold, 157****Freeze tolerance, 157****Freeze avoidance, 158****Chill tolerance, 158****Chill susceptibility, 158****Opportunistic survival, 159****6.6.2 Heat, 159****6.6.3 Aridity, 160****6.7 Migration, 161****6.8 Polymorphism and polyphenism, 162****6.8.1 Genetic polymorphism, 162****6.8.2 Environmental polymorphism or polyphenism, 163****6.9 Age-grading, 164****6.9.1 Age-grading of immature insects, 164****6.9.2 Age-grading of adult insects, 164****6.10 Environmental effects on development, 166****6.10.1 Temperature, 166****6.10.2 Photoperiod, 169****6.10.3 Humidity, 169****6.10.4 Mutagens and toxins, 169****6.10.5 Biotic effects, 170****6.11 Climatic modelling of insect distributions, 171**

7 Insect systematics: phylogeny and evolution, 175

- 7.1 Phylogenetics, 176
 - 7.1.1 Phylogenetic methods, 177
 - 7.1.2 Taxonomy and classification, 178
- 7.2 The antiquity of insects, 178
 - 7.2.1 The insect fossil record, 178
 - 7.2.2 Living insects: the evidence for antiquity, 181
- 7.3 Insect radiations, 182
- 7.4 Evolution of wings, 183
- 7.5 Classification and selected diagnostic features of extant hexapods, 187
 - 7.5.1 Class and order Protura (proturans), 189
 - 7.5.2 Class and order Collembola (springtails), 189
 - 7.5.3 Class and order Diplura (diplurans), 189
 - 7.5.4 Class Insecta (true insects), 189
 - Informal grouping 'Apterygota' (Archaeognatha and Thysanura), 189
 - Infraclass Pterygota, 190

8 Ground-dwelling insects, 195

- 8.1 Insects of litter and soil, 196
 - 8.1.1 Root-feeding insects, 198
- 8.2 Insects and dead trees or decaying wood, 199
- 8.3 Insects and dung, 201
- 8.4 Insect–carrion interactions, 203
- 8.5 Insect–fungal interactions, 204
 - 8.5.1 Fungivorous insects, 204
 - 8.5.2 Fungus farming by leaf-cutter ants, 204
 - 8.5.3 Fungus cultivation by termites, 206
- 8.6 Cavernicolous insects, 207
- 8.7 Environmental monitoring using ground-dwelling hexapods, 207

9 Aquatic insects, 215

- 9.1 Taxonomic distribution and terminology, 216
- 9.2 The evolution of aquatic lifestyles, 216
- 9.3 Aquatic insects and their oxygen supplies, 217
 - 9.3.1 The physical properties of oxygen, 217
 - 9.3.2 Gaseous exchange in aquatic insects, 217
 - 9.3.3 Oxygen uptake with a closed tracheal system, 218
 - 9.3.4 Oxygen uptake with an open spiracular system, 219

- 9.3.5 Behavioural ventilation, 220
- 9.4 The aquatic environment, 221
 - 9.4.1 Lotic adaptations, 221
 - 9.4.2 Lentic adaptations, 223
- 9.5 Environmental monitoring using aquatic insects, 225
- 9.6 Functional feeding groups, 226
- 9.7 Insects of temporary waterbodies, 227
- 9.8 Insects of the marine, intertidal and littoral zones, 228

10 Insects and plants, 239

- 10.1 Coevolutionary interactions between insects and plants, 241
- 10.2 Phytophagy (or herbivory), 241
 - 10.2.1 Leaf chewing, 243
 - 10.2.2 Plant mining and boring, 245
 - 10.2.3 Sap sucking, 248
 - 10.2.4 Gall formation, 250
 - 10.2.5 Seed predation, 254
 - 10.2.6 Insects as biological control agents for weeds, 255
- 10.3 Insects and plant reproductive biology, 257
 - 10.3.1 Pollination, 258
 - 10.3.2 Myrmecochory: seed dispersal by ants, 262
- 10.4 Insects that live mutualistically in specialized plant structures, 263
 - 10.4.1 Ant–plant interactions involving domatia, 263
 - 10.4.2 Phytotelmata: plant-held water containers, 264

11 Insect societies, 277

- 11.1 Subsociality in insects, 278
 - 11.1.1 Aggregation, 278
 - 11.1.2 Parental care as a social behaviour, 278
 - Parental care without nesting, 279
 - Parental care with solitary nesting, 279
 - Parental care with communal nesting, 281
 - Subsocial aphids and thrips, 281
 - Quasisociality and semisociality, 282
- 11.2 Eusociality in insects, 283
 - 11.2.1 The primitively eusocial hymenopterans, 283

11.2.2 Specialized eusocial hymenopterans:
wasps and bees, 285
Colony and castes in eusocial wasps
and bees, 285
Nest construction in eusocial
wasps, 289
Nesting in honey bees, 290

11.2.3 Specialized hymenopterans: ants, 292
Colony and castes in ants, 292
Nesting in ants, 294

11.2.4 Isoptera (termites), 295
Colony and castes in termites, 295
Nesting in termites, 299

11.3 Inquilines and parasites of social insects, 300

11.4 Evolution of eusociality, 302

11.4.1 The origins of eusociality in
Hymenoptera, 302

11.4.2 The origins of eusociality in
Isoptera, 304

11.5 Success of eusocial insects, 305

12 Insect predation and parasitism, 307

12.1 Prey/host location, 308

12.1.1 Sitting-and-waiting, 309

12.1.2 Active foraging, 311
Random, or non-directional
foraging, 311
Non-random, or directional
foraging, 312

12.1.3 Phoresy, 313

12.2 Prey/host acceptance and manipulation, 314

12.2.1 Prey manipulation by predators, 314

12.2.2 Host acceptance and manipulation by
parasitoids, 316

12.2.3 Overcoming host immune
responses, 316

12.3 Prey/host selection and specificity, 317

12.3.1 Host use by parasitoids, 319

12.3.2 Host manipulation and development of
parasitoids, 322

12.3.3 Patterns of host use and specificity in
parasites, 323

12.4 Models of abundances of predator/parasitoids
and prey/hosts, 325

12.5 The evolutionary success of insect predation
and parasitism, 327

13 Insect defence, 333

13.1 Defence by hiding, 334

13.2 Secondary lines of defence, 336

13.3 Mechanical defences, 338

13.4 Chemical defences, 339

13.4.1 Classification by function of defensive
chemicals, 339

13.4.2 The chemical nature of defensive
compounds, 340

13.4.3 Sources of defensive chemicals, 340

13.4.4 Organs of chemical defence, 341

13.5 Defence by mimicry, 342

13.5.1 Batesian mimicry, 345

13.5.2 Müllerian mimicry, 345

13.5.3 Mimicry as a continuum, 346

13.6 Collective defences in gregarious and social
insects, 347

14 Medical and veterinary entomology, 353

14.1 Insect nuisance and phobia, 354

14.2 Venoms and allergens, 354

14.2.1 Insect venoms, 354

14.2.2 Blister and urtica (itch)-inducing
insects, 355

14.2.3 Insect allergenicity, 355

14.3 Insects as causes and vectors of disease, 355

14.4 Generalized disease cycles, 356

14.5 Pathogens, 357

14.5.1 Malaria, 357
The disease, 357
Life cycle of *Plasmodium*, 358
Malaria epidemiology, 360

14.5.2 Arboviruses, 363

14.5.3 Rickettsias and plague, 364

14.5.4 Protists other than malaria, 365
Trypanosoma, 365
Leishmania, 366

14.5.5 Filariae, 366
Bancroftian and brugian filariasis, 366
Onchocerciasis, 367

14.6 Forensic entomology, 367

15 Pest management, 373

15.1 Insects as pests, 374

15.1.1 Assessment of pest status, 374

15.1.2 Why insects become pests, 376

15.2 The effects of insecticides, 378
15.2.1 Insecticide resistance, 380

15.3 Integrated pest management (IPM), 381

15.4 Chemical control, 382
15.4.1 Insecticides (chemical poisons), 382
15.4.2 Insect growth regulators, 384
15.4.3 Neuropeptides and insect control, 385

15.5 Biological control, 385
15.5.1 Arthropod natural enemies, 389
15.5.2 Microbial control, 391
 Nematodes, 392
 Fungi, 393
 Bacteria, 393
 Viruses, 395

15.6 Host-plant resistance to insects, 396
15.6.1 Genetic engineering of host resistance, 397

15.7 Mechanical or physical control, 399

15.8 Cultural control, 399

15.9 Pheromones and other insect attractants, 400

15.10 Genetic manipulation of insect pests, 402

16.1 Collection, 406

16.1.1 Active collecting, 406
16.1.2 Passive collecting, 407

16.2 Preservation and curation, 409
16.2.1 Dry preservation, 409
 Killing and handling prior to dry mounting, 409
 Pinning, staging, pointing, carding, spreading and setting, 409
16.2.2 Fixing and wet preservation, 413
16.2.3 Microscope slide mounting, 414
16.2.4 Habitats, mounting and preservation of individual orders, 414
16.2.5 Curation, 417
 Labelling, 417
 Care of collections, 418

16.3 Identification, 418
16.3.1 Identification keys, 419
16.3.2 Unofficial taxonomies, 420

Glossary of entomological and selected technical terms, 423

References, 443

Index, 451

Appendix: A reference guide to orders

Colour plates fall between pp. 256 and 257.