Second Edition

MECHANICS OF MATERIALS

Includes
MDSolids
winner of the Premier Award
for Excellence in
Engineering Software

CONTENTS

1 INTRODUCTION TO MECHANICS OF MATERIALS		1	2.11 2.12	Hooke's Law for Plane Stress; The Relationship Between E and G, 68 General Definitions of Stress and	
1.2 1.3 1.4	What Is Mechanics of Materials? 1 The Fundamental Equations of Deformable-Body Mechanics, 3 Problem-Solving Procedures, 6 Review of Static Equilibrium; Equilibrium of Deformable Bodies, 8 Problems, 17		2.14	Strain, 71 Cartesian Components of Stress; Generalized Hooke's Law for Isotropic Materials, 81 Problems, 86 (IAL DEFORMATION	
1.3	·		3.1	Introduction, 113	
2 ST	TRESS AND STRAIN; DESIGN	21	3.2	Basic Theory of Axial Deformation, 113	
2.1	Introduction, 21		3.3	Structures with Uniform Axial- Deformation Members, 119	
2.2 2.3	Normal Stress, 21 Extensional Strain; Thermal Strain, 30		3.4	Examples of Nonuniform Axial Deformation, 128	
2.4	Stress-Strain Diagrams; Mechanical Properties of Materials, 36		3.5	Statically Indeterminate Structures, 134	
2.5	Elasticity and Plasticity; Temperature Effects, 44		3.6	Thermal Effects on Axial Deformation, 143	
3. 6	Linear Elasticity; Hooke's Law and		3.7	Geometric "Misfits," 154	
	Poisson's Ratio, 47 Shear Stress and Shear Strain; Shear		3.8	Displacement-Method Solution of Axial-Deformation Problems, 160	
7	Modulus, 50		*3.9	Force-Method Solution of Axial- Deformation Problems, 172	
29	Introduction to Design—Axial Loads and Direct Shear, 56		*3.10		
	Stresses on an Inclined Plane in an Axially Loaded Member, 64		*3.11	Inelastic Axial Deformation, 189	
P	Saint-Venant's Principle, 66			Problems, 201	

4 TO	DRSION	227	70.0	Ousymmetric Bending, 369	
			*6.7	Inelastic Bending of Beams, 379	
4.1	,,		6.8	Shear Stress and Shear Flow in Beams, 389	
4.2	Bars, 228		6.9	Limitations on the Shear Stress Formula, 395	
4.3	Torsion of Linearly Elastic Circular Bars, 231		6.10	Shear Stress in Thin-Wall Beams,	
4.4	Stress Distribution in Circular Torsion Bars; Torsion Testing, 239		6.11	398 Shear in Built-Up Beams, 408	
4.5	<u>o</u> .		*6.12		
7.0	Statically Determinate Assemblages of Uniform Torsion Members, 243		6.13		
4.6	Statically Indeterminate Assemblages of Uniform Torsion Members, 248			ELECTION OF BEAMS	_
4.7	Displacement-Method Solution of Torsion Problems, 256			FLECTION OF BEAMS	
4.8				Introduction, 448	
*4.9	Power-Transmission Shafts, 262 Thin-Wall Torsion Members, 265		7.2	Differential Equations of the Deflection Curve, 449	
*4.10	Torsion of Noncircular Prismatic Bars, 270		7.3	Slope and Deflection by Integration—Statically Determinate	
*4.11	Inelastic Torsion of Circular Rods, 274		- 4	Beams, 455	
4.12	Problems, 280		7.4	Slope and Deflection by Integration—Statically Indeterminate Beams, 468	
5 EQ	UILIBRIUM OF BEAMS	298	7.5	Use of Discontinuity Functions to Determine Beam Deflections, 473	
5.1	Introduction, 298		7.6	Slope and Deflection of Beams: Superposition Method, 480	
5.2	Equilibrium of Beams Using Finite Free-Body Diagrams, 303		7.7	Slope and Deflection of Beams: Displacement Method, 498	
5.3	Equilibrium Relationships Among Loads, Shear Force, and Bending Moment, 307		7.8	Problems, 505	
5.4	Shear-Force and Bending-Moment Diagrams, 310			NSFORMATION OF STRESS STRAIN; MOHR'S CIRCLE	5
5.5	Discontinuity Functions to Represent Loads, Shear, and Moment, 322		8.1	Introduction, 524	
5.6	Problems, 329		8.2	Plane Stress, 525	
			8.3	Stress Transformation for Plane Stress, 527	
6 STR	RESSES IN BEAMS	338	8.4	Principal Stresses and Maximum	
6.1	Introduction, 338		8.5	Shear Stress, 534	
6.2	Strain-Displacement Analysis, 341		8.6	Mohr's Circle for Plane Stress, 540	
6.3	Flexural Stress in Linearly Elastic		_	Triaxial Stress; Absolute Maximum Shear Stress, 547	
<i>L A</i>	Beams, 347		8.7	Plane Strain, 554	
6.4 6.5	Design of Beams for Strength, 356 Flexural Stress in Nonhomogeneous		8.8	Transformation of Strains in a Plane, 555	
	Beams, 362		80	Mohr's Circle for Strein 550	

8.10	Measurement of Strain; Strain			Dynamic Loading; Impact, 709 Problems, 714	
0.11	Rosettes, 565 Analysis of Three-Dimensional	J	11.10	1 tonicins, 714	
8.11	Strain, 570	-			
8.12	Problems, 571		12 SI	PECIAL TOPICS RELATED TO GN	729
———— 9 PRES	SSURE VESSELS; STRESSES DUE		12.1	Introduction, 729	
го со	OMBINED LOADING	58 <u>5</u>	12.2	Stress Concentrations, 729	
	I 4 - 1 - 4 - 595			Failure Theories, 736 Fatigue and Fracture, 744	
	Introduction, 585 Thin-Wall Pressure Vessels, 586	`	*12.4	Problems, 748	
9.2	Stress Distribution in Beams, 592		12.5	Problems, 740	
					
7.4	597		AN	UMERICAL ACCURACY;	
9.5	Problems, 606			OXIMATIONS	A-1
				Numerical Accuracy; Significant	
	UCKLING OF COLUMNS	614		Digits, A-1	
IO R	UCKLING OF COLOMINS			Approximations, A-2	
10.1	Introduction, 614				
10.2	The Ideal Pin-Ended Column; Euler Buckling Load, 617		B SY	STEMS OF UNITS	B-1
10.3	The Effect of End Conditions on			Introduction, B-1	
	Column Buckling, 623			SI Units, B-1	
*10.4	Eccentric Loading; the Secant		B.2 B.3	U.S. Customary Units; Conversion of	
440 F	Formula, 630 Imperfections in Columns, 636		D.J	Units, B-3	
*10.5	Inelastic Buckling of Ideal Columns,			/	
*10.6	637				
10,7				GEOMETRIC PROPERTIES OF NE AREAST	C-0
10.8	Problems, 647			First Moments of Area; Centroid, C-1	
			C.1	Moments of Inertia of an Area, C-4	
		660	C.2	Product of Inertia of an Area, C-9	
11 E	NERGY METHODS		C 4	Area Moments of Inertia About	
11.1	Introduction, 660		Cit	Inclined Axes; Principal Moments of	
11.2				Inertia, C-11	
	Elastic Strain Energy for Various Types of Loading, 668		†	See CD-ROM for Sections C.1 through	_
11.4	Work-Energy Principle for Calculating Deflections, 674				
11.5			D SEL	SECTION PROPERTIES OF ECTED STRUCTURAL SHAPES	D-1
*11.6	6 Virtual Work, 690			Constitute Flores (M)	
*11.7	7 Strain-Energy Methods, 694		D.1	Properties of Steel Wide-Flange (W) Shapes (U.S. Customary Units), D-2	
*11.	8 Complementary-Energy Methods, 699			Snapes (U.S. Customary Omes), D2	xiii
					XIII

D.2	Properties of Steel Wide-Flange (W) Shapes (SI Units), D-3		E.3	Fixed-End Actions for Uniform Beams, E-4		
D.3	Properties of American Standard (S) Beams (U.S. Customary Units), D-4			ECHANICAL PROPERTIES OF		
D.4	5(1.1(0)		SELECTED ENGINEERING MATERIALS F-			
D.5	Properties of Steel Angle		F.1			
	Sections—Equal Legs (U.S. Customary Units), D-6		F.2	Modulus of Elasticity, Shear Modulus of Elasticity, and Poisson's Ratio, F-3		
D.6	Properties of Steel Angle Sections—Unequal Legs (U.S. Customary Units), D-7		F.3	Yield Strength, Ultimate Strength, Percent Elongation in 2 Inches, and Coefficient of Thermal Expansion, F-4		
D.7	Properties of Standard-Weight Steel					
D.8	Pipe (U.S. Customary Units), D-8 Properties of Structural Lumber (U.S.).	G	G-1		
2.0	Customary Units), D-9			100 PL C1		
D.9	Properties of Aluminum Association			MDSolids, G-1		
	Standard I-Beams (U.S. Customary		G.2	MechSOLID, G-4 See CD-ROM for Sections G-1 and		
	Units), D-10		Ŧ	G-2.		
D.10	Standard Channels (U.S. Customary			U-2.		
	Units), D-11		AN NU	SWERS TO SELECTED ODD- UMBERED PROBLEMS	AN-1	
E D	EFLECTIONS AND SHOPES OF MS; FIXED-END ACTIONS	E-0				
			RE	FERENCES	R-1	
E.1	Deflections and Slopes of Cantilever Uniform Beams, E-0		_			
E.2	Deflections and Slopes of Simply- Supported Uniform Beams, E-2		IN	DEX	-1 	