COMPUTER ALGORITHMS Introduction to Design & Analysis Sara Baase Allen Van Gelder ## **Contents** | | Preface | vii | |---|--|-----| | 1 | Analyzing Algorithms and Problems: Principles and Examples | 1 | | | 1.1 Introduction 2 1.2 Java as an Algorithm Language 3 1.3 Mathematical Background 11 1.4 Analyzing Algorithms and Problems 30 1.5 Classifying Functions by Their Asymptotic Growth Rates 43 1.6 Searching an Ordered Array 53 Exercises 61 Notes and References 67 | : | | 2 | Data Abstraction and Basic Data Structures | 69 | | | 2.1 Introduction 70 2.2 ADT Specification and Design Techniques 71 2.3 Elementary ADTs—Lists and Trees 73 2.4 Stacks and Queues 86 2.5 ADTs for Dynamic Sets 89 Exercises 95 Notes and References 100 | | | 3 | Recursion and Induction | 101 | | | 3.1 Introduction 102 3.2 Recursive Procedures 102 3.3 What Is a Proof? 108 3.4 Induction Proofs 111 3.5 Proving Correctness of Procedures 118 | | | | 3.6 | Recurrence Equations 130 | | |-----|------|---|-----| | | 3.7 | Recursion Trees 134 | | | | | Exercises 141 | | | | | Notes and References 146 | | | 4 | Sor | ting | 149 | | | 4.1 | Introduction 150 | | | | 4.2 | Insertion Sort 151 | | | | 4.3 | Divide and Conquer 157 | | | | 4.4 | Quicksort 159 | | | | 4.5 | Merging Sorted Sequences 171 | | | | 4.6 | Mergesort 174 | | | | 4.7 | Lower Bounds for Sorting by Comparison of Keys 178 | | | | 4.8 | Heapsort 182 | | | | 4.9 | Comparison of Four Sorting Algorithms 197 | | | | | Shellsort 197 | | | | 4.11 | | - | | | | Exercises 206 | | | | | Programs 221 | | | | | Notes and References 221 | | | 5 | Sele | ection and Adversary Arguments | 223 | | | 5.1 | Introduction 224 | | | | 5.2 | Finding max and min 226 | | | • • | 5.3 | Finding the Second-Largest Key 229 | | | | 5.4 | The Selection Problem 233 | | | | 5.5 | A Lower Bound for Finding the Median 238 | | | | 5.6 | Designing Against an Adversary 240 | | | | | Exercises 242 | | | | | Notes and References 246 | | | 6 | Dyr | namic Sets and Searching | 249 | | | 6.1 | Introduction 250 | | | | 6.2 | Array Doubling 250 | | | | 6.3 | Amortized Time Analysis 251 | | | | 6.4 | Red-Black Trees 253 | | | | 6.5 | Hashing 275 | | | | 6.6 | Dynamic Equivalence Relations and Union-Find Programs 283 | | | | 6.7 | Priority Queues with a Decrease Key Operation 295 | | | | | Exercises 302 | | | Programs | 309 | | |-------------|------------|-----| | Notes and I | References | 309 | | | | | | 7 | Gra | aphs and Graph Traversals | 313 | |----|---|--|-----| | | 7.1
7.2
7.3
7.4
7.5
7.6
7.7 | Introduction 314 Definitions and Representations 314 Traversing Graphs 328 Depth-First Search on Directed Graphs 336 Strongly Connected Components of a Directed Graph 357 Depth-First Search on Undirected Graphs 364 Biconnected Components of an Undirected Graph 366 Exercises 375 Programs 384 Notes and References 385 | | | 8 | Gra | nph Optimization Problems and Greedy Algorithms | 387 | | | 8.1
8.2
8.3
8.4 | Introduction 388 Prim's Minimum Spanning Tree Algorithm 388 Single-Source Shortest Paths 403 Kruskal's Minimum Spanning Tree Algorithm 412 Exercises 416 Programs 421 Notes and References 422 | | | 9 | Tra | nsitive Closure, All-Pairs Shortest Paths | 425 | | | 9.1
9.2
9.3
9.4
9.5
9.6 | Introduction 426 The Transitive Closure of a Binary Relation 426 Warshall's Algorithm for Transitive Closure 430 All-Pairs Shortest Paths in Graphs 433 Computing Transitive Closure by Matrix Operations 436 Multiplying Bit Matrices—Kronrod's Algorithm 439 Exercises 446 Programs 449 Notes and References 449 | | | 10 | Dyı | namic Programming | 451 | | | 10.1
10.2
10.3 | Introduction 452
Subproblem Graphs and Their Traversal 453 | | | | 10.5
10.6 | Separating Sequences of Words into Lines 471 Developing a Dynamic Programming Algorithm 474 Exercises 475 | | |----|--------------|---|-----| | | | Programs 481 | | | | | Notes and References 482 | | | 11 | Stri | ng Matching | 483 | | | 11.1 | - | | | | | A Straightforward Solution 485 | | | | | The Knuth-Morris-Pratt Algorithm 487 | | | | | The Boyer-Moore Algorithm 495 | | | | 11.5 | Approximate String Matching 504 | | | | | Exercises 508 | | | | | Programs 512 Notes and References 512 | | | | | Notes and References 512 | | | 17 | ~ . | | | | ıZ | Poly | ynomials and Matrices | 515 | | | 12.1 | Introduction 516 | | | | | Evaluating Polynomial Functions 516 | | | | | Vector and Matrix Multiplication 522 | | | * | 12.4 | The Fast Fourier Transform and Convolution 528 Exercises 542 | | | | | Programs 546 | | | | | Notes and References 546 | | | | | | | | 12 | 2.00 | | | | IJ | му. | -Complete Problems | 547 | | | | Introduction 548 | | | | | \mathcal{P} and \mathcal{NP} 548 | | | | | NP-Complete Problems 559 | | | | 13.4 | 11 0 | | | | | Bin Packing 572 The Knappack and Subset Sum Broblems 577 | | | | 13.7 | The Knapsack and Subset Sum Problems 577 Graph Coloring 581 | | | | 13.8 | | | | | 13.9 | | | | | *** | Exercises 600 | | | | | Notes and References 608 | | 10.4 Constructing Optimal Binary Search Trees 466 | 14 | Par | allel Algorithms | 611 | |----|-------------|--|-----| | | 14.1 | Introduction 612 | | | | 14.2 | Parallelism, the PRAM, and Other Models 612 | | | | 14.3 | Some Simple PRAM Algorithms 616 | | | | | Handling Write Conflicts 622 | | | | 14.5 | Merging and Sorting 624 | | | | 14.6 | Finding Connected Components 628 | | | | 14.7 | A Lower Bound for Adding <i>n</i> Integers 641 | | | | | Exercises 643 | | | | | Notes and References 647 | | | A | Java | a Examples and Techniques | 649 | | | A.1 | Introduction 650 | | | | A.2 | A Java Main Program 651 | | | | A.3 | A Simple Input Library 656 | | | | A.4 | Documenting Java Classes 658 | | | | A.5 | Generic Order and the "Comparable" Interface 659 | | | | A.6 | Subclasses Extend the Capability of Their Superclass 663 | | | | A .7 | Copy via the "Cloneable" Interface 667 | | | | Bib | liography | 669 | | | Ind | . , | | | | mu | CX | 679 |