Reinforced Concrete Slahs

SECOND EDITION

Suranaree University of Technology

Robert Park

William L. Gamble

CONTENTS

Pref	ace		xii		
1.	Intr	oduction			
,	1.1 1.2 1.3 1.4	Scope and General Remarks, 1 Types of Reinforced Concrete Slab Construction, 3 Choice of Type of Slab Floor, 10 Approaches to the Analysis and Design of Slab Systems, 11			
		 1.4.1 Complete Behavior of Slab Systems, 12 1.4.2 Elastic Theory Analysis, 13 1.4.3 Limit Analysis, 14 1.4.4 ACI Building Code Method, 16 1.4.5 Design Procedures, 18 			
	1.5	Notes on Units, 18 References, 19			
2.	Basis of Elastic Theory Analysis				
		Classical Plate Theory, 21 2.2.1 Lagrange's Equation, 21 2.2.2 Equilibrium, 22 2.2.3 Moment-Deformation Relationships, 24 2.2.4 Shear-Deformation Relationships, 30 2.2.5 Boundary Conditions, 31 2.2.6 Reactions, 32 2.2.7 Poisson's Ratio, 34 2.2.8 Moments Acting at an Angle to the Coordinate Axes, 36 2.2.9 Method of Solution, 37			
	2.5	Elastic Models, 42 Finite Difference Methods, 42 Finite Element Methods, 46 Approximate Methods, 49			

3.	Results of Elastic Theory Analysis					
	3.1		Introduction, 60			
	3.2	Mome	ents in Interior Panels of Slabs, 68			
		3.2.1	Effects of Relative Stiffness of Supporting Beams, 68			
		3.2.2	Effects of Size of Supporting Column or Capital, 80			
		3.2.3	Pattern Loadings, 81			
	3.3	Mome	ents in Edge Panels of Slabs, 101			
		3.3.1	Moments in the Span Parallel to the Edge of the Structure, 103			
		3.3.2	•			
	3.4	Mome	ents in Corner Panels, 117	,		
	3.5		al Cases of Loading and Geometry, 122			
		3.5.1	Effects of Concentrated and Line Loads on Moments, 122			
		3.5.2	Effects of Loads Varying Linearly Across One Span, 130			
		3.5.3	Effects of Holes in Slabs, 133			
			ences, 139			
4.			d of 1971 and 1995 ACI Building Code onts for Reinforced Concrete Slab Design	144		
	4.1	Introd	luction, 144			
	4.2		Moment and Structural Safety, 148			
			Static Moment, 148	\$		
	4.3	Equiv	alent Frame Method: Determination of Negative ositive Slab Moments and Column Moments, 157	•		
		4.3.1	General Comments and Manual Calculation Approach, 157			
		4.3.2	Idealizations for Plane-Frame Computer Analysis, 174			
	4.4	Distri	bution of Moments Across Sections, 180			
	4.5		t Design Method, 195			
		4.5.1 4.5.2	Negative-Positive Distribution of Moments, 195 Requirements for Column Moments and Stiffnesses, 200			

5.	Ger	neral Lower Bound Limit Analysis and Design	205
	5.1 5.2	Introduction, 205 Governing Equations for General Lower Bound Limit Analysis, 207	
		5.2.1 Equilibrium Equation, 2075.2.2 Transformation of Moments to Different Axes, 209	
		5.2.3 Boundary Conditions, 2105.2.4 Yield Criterion, 211	
	5.3	Analysis of Slabs by General Lower Bound Method, 217	
	5.4	Design of Reinforcement for Slabs in Accordance with a Predetermined Field of Moments, 223	
		5.4.1 General Approach, 2235.4.2 Reinforcement Arranged at Right Angles, 224	
	5.5		
6.	Desi	ign by the Strip Method and Other Equilibrium Methods	232
	6.1	Introduction, 232	
	6.2	Simple Strip Method, 234	
		6.2.1 Strip Action, 234	
		6.2.2 Discontinuity Lines Originating from Slab Corners, 238	
		6.2.3 Discontinuity Lines Originating from Slab Sides, 247	
		6.2.4 Strong Bands, 254	
		6.2.5 Skewed and Triangular Slabs, 255	
		6.2.6 Comparison with the Yield Line Theory Ultimate Load, 256	
		6.2.7 Design Applications, 258	
	6.3	Advanced Strip Method, 277	
		6.3.1 Types of Slab Element, 2786.3.2 Design Applications, 285	
	6.4	Segment Equilibrium Method, 287	
		6.4.1 Flat Plates with Columns on a Rectangular Grid, 287	
		6.4.2 Flat Plates with Irregular Column Layouts, 293	
	6.5	Comparison with Test Results, 296 References, 300	

-	~ ~
- 41	1
_71	

7. Ba	asis of	Yield Line	Theory
-------	---------	------------	--------

- 7.1 Introduction, 303
- 7.2 Slab Reinforcement, Section Behavior, and Conditions at Ultimate Load, 303
 - 7.2.1 Slab Reinforcement, 303
 - 7.2.2 Ductility of Slab Sections, 304
 - 7.2.3 Conditions at Ultimate Load. 305
 - 7.2.4 Yield Lines as Axes of Rotation. 306
 - 7.2.5 Ultimate Moments of Resistance at Yield Lines. 308
 - 7.2.6 Determination of the Ultimate Load, 310
- 7.3 Analysis by Principle of Virtual Work, 311
 - 7.3.1 Virtual Work Equation, 311
 - 7.3.2 Components of Internal Work Done, 314
 - 7.3.3 Minimum-Load Principle, 314
- 7.4 Analysis by Equations of Equilibrium, 321
 - 7.4.1 Equilibrium Equations, 321
 - 7.4.2 Statical Equivalents of Shear Forces Along a Yield Line, 322
 - 7.4.3 Magnitude of Nodal Forces, 323
 - 7.4.4 Method of Solution by the Equilibrium Equations, 332
- 7.5 Concentrated Loads, 339
 - 7.5.1 Types of Yield Line Patterns, 339
 - 7.5.2 Circular Fans, 341
- 7.6 Superposition of Moment Strengths for Combined Loading Cases, 346
- 7.7 Corner Effects, 349
- 7.8 Affinity Theorem, 354
- 7.9 General Cases for Uniformly Loaded Rectangular Slabs, 363
 - 7.9.1 Ultimate Moments of Resistance of the Slabs, 363
 - 7.9.2 Uniformly Loaded Orthotropic Rectangular Slabs with All Edges Supported, 363
 - 7.9.3 Uniformly Loaded Orthotropic Rectangular Slabs with Three Edges Supported and One Edge Free, 366
 - 7.9.4 Uniformly Loaded Orthotropic Rectangular Slabs with Two Adjacent Edges Supported and the Other Edges Free, 369
- 7.10 Composite Beam-Slab Collapse Mechanisms, 371

7.11	Beamless Floors, 377				
	7.11.1	Folding Yield Line Patterns, 377			
	7.11.2	Local Yield Line Patterns at Columns, 379			
	7.11.3				
		Connections, 384			
	7.11.4				
	7.11.5	Shear Strength of Slab-Column Connections, 390			
7.12	Uniform	nly Loaded Rectangular Slabs with			
	-	gs, 390			
7.13	Uniforn	mly Loaded Circular and Ring Slabs, 399			
	7.13.1	Circular Slab Supported on <i>n</i> Columns and Subjected to Uniform Loading, 399			
	7.13.2				
7.14	Skew S	labs, 403			
7.15		imate Yield Line Patterns for Uniformly Loaded			
		gular Slabs, 407			
	7.15.1	Use of Approximate Yield Line Patterns, 407			
	7.15.2				
		Edges Supported, 407			
	7.15.3	, 9			
		Three Edges Supported and One Edge Free, 409			
	7.15.4	,			
	7.15.7	Adjacent Edges Supported and the Remaining			
		Edges Free, 413			
7.16	Trial-ar	nd-Error Method for Approximate Yield Line			
		s, 415			
7.17	Compa	rison with Test Results, 424			
	7.17.1	Tests Conducted by the Deutscher Ausschuss			
		für Eisenbeton, 424			
	7.17.2	•			
	7.17.3				
		Berlin, 428			
	7.17.4	Tests Conducted at the TNO Institute for			
		Building Materials and Structures, 428			
	7.17.5	Tests Conducted at the University of			
		Manchester, 430			
	7.17.6	Tests Conducted at the University of			
	7 177	Canterbury, 439			
	7.17.7	,			
		Illinois, 442			

-	
ж	

8.

9.

N.		rences, 445	
	ign by	Yield Line Theory	449
8.1	Introd	uction, 449	
8.2		th and Serviceability Provisions, 450	
		Design Load and Moment of Resistance, 450	
	8.2.2	Reinforcement Ratios, 451	
	8.2.3	Reinforcement Arrangements, 452	
	8.2.4	Serviceability Checks, 453	
		Other Design Aspects, 454	
8.3		position of Loading, 455	
8.4		of Uniformly Loaded Two-Way Slabs, 458	
	8.4.1	Extent of Top Steel in Uniformly Loaded	
	0.40	Rectangular Slabs, 458	
	8.4.2 8 4 3	Minimum-Weight Design, 468 Design Examples, 474	
8.5		of Beamless Slabs, 494	
8.6		of Supporting Beams for Uniformly Loaded	
0.0	Two-W	Vay Slabs, 499	
	8.6.1	Approach Based on Composite Beam-Slab	
		Collapse Mechanisms, 499	
	8.6.2	- Production of Louding Transferred to the	
	062	Beams, 502	_
	8.6.3	Other Arrangements of Beams and Columns, 509	
	864	Summary of Design Method for Beams, 512	
,		nces, 513	
	Reserve	nees, 313	
Serv	riceabili	ty of Slabs	515
9.1		uction, 515	
9.2		tions, 515	
	9.2.1	General Comments on Deflections, 515	
		Computation of Deflections, 521	
	9.2.3		
0.0	a	Control, 526	
9.3	Cracki	•	
	9.3.1	Need for Crack Control, 530	
		Causes of Cracking, 532	
	9.3.3	Computation of Width of Flexural Cracks in One-Way Slabs, 533	
		One-way Staus, 333	

7.17.8 Tests Conducted at the Portland Cement

Association, 445

			Computation of Width of Flexural Cracks in Two-Way Slabs, 540	
			Code Provisions for Crack Control, 545	
			ces, 547	
10.	Shea	r Streng	th of Slabs	551
	10.1		ection, 551	
	10.2	Shear,		
			Mechanism of Shear Failure of Slabs Without Shear Reinforcement, 554	
			ACI Code Approach to Shear Strength Without Shear Reinforcement, 560	
		10.2.3	Truss Models for Shear Strength, 564	
			ACI Code Approach to Shear Strength with Shear Reinforcement, 566	
		10.2.5	Service Ducts in Slabs, 572	
		10.2.6	1	
	10.3	Shear S	Strength of Slab-Column Connections	
		Transfe	erring Shear and Unbalanced Moment, 579	
		10.3.1	Behavior of Slab-Column Connections Transferring Shear and Unbalanced Bending Moment, 579	
		10.3.2		
		10.3.3		•
		10.3.4	ASCE-ACI Committee 426 Suggested Approach, 594	
		10.3.5	Interior Connections, 601	
		10.3.6		
		10.3.7	Ductility of Slab-Column Connections, 613	
£ 1	10.4		Vall Connections, 615	
	10.5		Capacity with High-Strength Concrete, 615 nces, 617	
11.	Prest	ressed C	Concrete Slabs	621
	11.1	Introdu	ction, 621	
	11.2	Basis fo	or Design, 622	
		11.2.1	General Approach, 622	
		11.2.2		
		11.2.3		
		11.2.4	Shear Strength, 631	

11.

		11.2.5 Concluding Comments, 633	
	11.3	Corrosion Concerns, 633 References, 634	
12.	Mem	brane Action in Slabs	636
•		Introduction, 636	
	12.2	Uniformly Loaded Laterally Restrained Reinforced Concrete Slabs, 636	
		12.2.1 General Behavior and Review of Past Research, 636	
		12.2.2 Behavior in the Compressive Membrane Range, 640	
		12.2.3 Behavior in the Tensile Membrane Range, 679	
	12.3	Concentrated Loads on Laterally Restrained Reinforced Concrete Slabs, 687	
	12.4	·	
	12.5		
13.	Fire :	Resistance of Reinforced Concrete Slabs	695
	13.1	Introduction, 695	
	13.2	Thermal Resistance, 697	
	13.3	Structural Fire Resistance, 698	
		13.3.1 Members Unrestrained Against Length Change, 698	•
		13.3.2 Members Restrained Against Length Change, 707	
	13.4	Special Considerations for High-Strength Concrete, 708	
		References, 709	
Inde	ex		711