

Annual Surfactants Review

Volume 3

D.R. Karsa

Contents

1,		factant applications in the context of structure—performance ationships	1
		IIDO BOGNOLO	
		<u> </u>	
	1.1	Introduction	1
	1.2	Applications for surfactants	6
	1.3	Structure-performance relationships	7
		1.3.1 General considerations	7
		1.3.2 Status and trends	8
	1.4	Industrial applications	- 11
		1.4.1 Building and construction	12
		1.4.2 Cosmetics and personal care	13
		1.4.3 Crop protection	21
		1.4.4 Emulsion polymerisation	26
		1.4.5 Food	29
		1.4.6 Inks, paints and coatings	31
		1.4.7 Metalworking fluids	34
		1.4.8 Mining chemicals	36
		1.4.9 Oilfield chemicals and petroleum additives	37
		1.4.10 Pharmaceuticals	40
		1.4.11 Pulp and paper	43
		1.4.12 Textiles	46
	1.5	Effect surfactants	50
		1.5.1 Acetylenic surfactants	50
		1.5.2 Fluorosurfactants	52
		1.5.3 Polymeric surfactants	53
		1.5.4 Silicone surfactants	59
		knowledgments	61
	Ref	erences	61
_	_		
2		rfactants in inverse (water-in-oil) emulsion polymers of	
	acı	rylamide	66
	JA	MES N. GREENSHIELDS	
	2.1	Introduction	66
		Process	67
		Mechanism and kinetics of polymerization	68
		Emulsifiers	7:
	2.4	2.4.1 Primary emulsifiers	7:
		2.4.2 Secondary, or 'inverting', emulsifiers	8:
	25	The mechanism of inversion	86
		Commercial uses	9
		forences	9.

		Introduction	97 98
	3.2	Nonionic polymers and nonionic surfactants	
	3.3	Nonionic polymers and ionic surfactants	99
	3.4	Polymers and surfactants of opposite charge	101 101
		3.4.1 Anionic polymers with cationic surfactants	
	3.5	Concentrated systems	111
	3.6	Adsorption at surfaces	113
		3.6.1 Air-liquid interfaces	113 116
		3.6.2 Solid-liquid interfaces	110
	3.7	Polymers with hydrophobic side-groups	120
		3.7.1 Polymer type	
		3.7.2 Surfactant type	122 123
	3.8	Solid-state properties of polymer-surfactant complexes	125
		Complexes in organic solvents	125
	3.10	Summary	125
	Ref	erences	123
4	T le	e of surfactants in plastic flotation	129
7		ARCELLO GHIANI and PAOLO BEVILACQUA	
	IVL	ARCELLO GHIAMI aliu PAOLO BEVILACQUA	
	4.1	Introduction	129
		Wetting and contact angle	129
		4.2.1 Measuring the contact angle	132
	4.3	Main characteristics of plastics in relation to flotation	134
		4.3.1 Molecular structure	134
		4.3.2 Free surface energy	134
		4.3.3 Surface polarity	136
	4.4	Wetting mechanisms of plastic surfaces	136
		4.4.1 Wetting through control of surface tension	136
		4.4.2 Wetting through adsorption	138
		4.4.3 Wetting through surface modification	138
	4.5	The theory of adsorption	138
	4.6	Electrical effects at interfaces	142
	4.7	Flotation surfactants	145
		4.7.1 Ionizable surfactants	14:
		4.7.2 Nonionic surfactants	140
	4.8	Wetting of plastics with use of surfactants	14
	Re	ferences	15
5	S	rface-active agents in the construction industry	15
		ATSUYA MIZUNUMA and AKIFUMI YAMADA	
	1.	A 130 I A MIZONOVIA and MAI OM THE INC.	
	5.1	Introduction	15
	5.2	Concrete and surfactants	15
		5.2.1 Workability	15
		5.2.2 Strength	15
		5.2.3 Durability	15
	5	3 History of chemical admixtures	15
	~	•	

CONTENTS	X

	5.4	Types of chemical admixture	158					
		5.4.1 Air-entraining agents	158					
		5.4.2 Water-reducing agents and high-range water-reducing agents	159					
		5.4.3 Applications	163					
	5.5	New concrete with air-entraining-type high-range water-reducing agents	163					
		5.5.1 Types of air-entraining-type high-range water-reducing agent	165					
		5.5.2 Mechanism of maintaining fluidity over a long period	165					
		5.5.3 Applications	167					
	5.6	Summary	167					
	Ref	erences	168					
6	Th	e role of surfactants in dynamic wetting	169					
	MI	CHEL J. DE RUIJTER						
	6.1	Introduction	169					
	6.2	Dynamic wetting	170					
		6.2.1 Hydrodynamic models	171					
		6.2.2 Molecular-kinetic model	173					
		6.2.3 Combined model	175					
		6.2.4 Microhydrodynamic model	175					
	6.3	Equilibrium wetting and surfactants	176					
	6.4	Dynamic wetting and surfactants	178					
	6.5	Performance surfactants and dynamic wetting	181					
	6.6	Impacting drops	182					
	6.7	Monolayer and multilayer spreading	183					
	6.8	Conclusions	185					
	Ref	erences	185					
7	Int	Interfacial properties of natural surfactants and their application						
		in drug delivery systems						
	HI	TOSHI YAMAUCHI						
	7.1	Introduction	189					
	7.2	Interfacial phenomena of some natural surfactants at the oil-water interface	189					
		7.2.1 Behavior of lipids at the oil-water interface	189					
	7.3		191					
		7.3.1 Molecular interactions between lipids and some steroids in monolayers						
		and bilayers	192					
		7.3.2 Molecular interactions between phospholipid and lipophilic substances						
		in a lipid bilayer	194					
		7.3.3 Molecular interactions between lipids and glycolipids in a bilayer	195					
	7.4	Application of liposomes in drug delivery systems	195					
		7.4.1 Selective uptake of liposomes containing lactose monofatty-acid derivatives						
		by hepatic parenchymal cells	196					
	•	7.4.2 Effect of sialic-acid derivatives on circulation time and tumor concentration						
		of liposomes	197					
	7.5	Conclusions	199					
		knowledgments	200					
		erences	200					
_	.		202					
ın	dex		404					