

Animal Cell Culture

Third Edition

Edited by

John R. W. Masters

PRACTICAL

Contents

List of protocols page xiii
Abbreviations xvii

1 Introduction to basic principles

R. Ian Freshney

- 1 Background 1
- 2 Biology of cells in culture 2 Origin and characterization 2 Differentiation 3
- 3 Choice of materials 3
 Cell type 3
 Source of tissue 4
 Subculture 5
 Selection of medium 7
 Gas phase 8
- Culture system 9
 4 Procedures 10
- Substrate 10 Medium 11

Cell culture 11

References 16

2 Scaling-up of animal cell cultures

Bryan Griffiths

- 1 Introduction 19
- 2 General methods and culture parameters 20
 Cell quantification 20
 Equipment and reagents 21
 Practical considerations 22
 Growth kinetics 23
 Medium and nutrients 23

pH 24 Oxygen 26 Types of culture process 30 Summary of factors limiting scale-up 32

3 Monolayer culture 32

Introduction 32

Cell attachment 34

Scaling-up 35

4 Suspension culture 48

Adaptation to suspension culture 49

Static suspension culture 50

Small scale suspension culture 50

Scaling-up factors 53

Stirred bioreactors 54

Continuous-flow culture 56

Airlift fermenter 57

5 Immobilized cultures 58

Immurement cultures 59

Entrapment cultures 62

Porous carriers 62

References 66

3 Cell line preservation and authentication

- R. J. Hay, M. M. Cleland, S. Durkin, and Y. A. Reid
 - 1 Introduction 69
 - 2 Cell line banking 70
 - 3 Cell freezing and quantitation of recovery 71

Equipment 72

Preparation and freezing 73

Reconstitution and quantitating recovery 74

4 Cell line authentication 78

Species verification 78

Tests for microbial contamination 81

Testing for intraspecies cross-contamination 94

Miscellaneous characterizations and cell line availability 101

Acknowledgements 102

References 102

4 Development of serum-free media

Soverin Karmiol

- 1 Introduction 105
- 2 Role of serum and other undefined tissue extracts in cell culture systems 105
- 3 Response curves 106

Proliferating cultures 106

Non-proliferating cultures (hepatocytes) 111

4 Antimicrobials, phenol red, Hepes, and light 112

Phenol red 113

Gentamicin 114

Hepes	115
Light	116

- 5 Purity of components 117
- 6 Fatty acids 117

Acknowledgements 120

References 120

5 Three-dimensional culture

- L. A. Kunz-Schughart and W. Mueller-Kleiser
 - 1 Introduction 123
- 2 Multicellular tumour spheroids (MCTS) 124 MCTS monocultures 124 MCTS co-cultures 133
- 3 Experimental tissue modelling 139
 Current research on tissue modelling 139
 Tissue modelling of skin and mucosa 140
 Embryoid bodies 143
 References 143

6 Tissue engineering

Robert A. Brown and Rebecca A. Porter

- 1 Introduction 149
- Design stages for tissue engineering 150
 Tissue engineered skin 152
 Tissue engineered urothelium 152
 Tissue engineered peripheral nerve implants 15
- 3 Cell substrates and support materials 154
- 4 Cell sources 157
- 5 Orientation 159

Mechanical cues 161

6 Protocols 163

Cell seeding of implantable materials 163

Slow release systems for local control of TE constructs or repair sites 165

Acknowledgements 168

References 168

7 Cytotoxicity and viability assays

Anne P. Wilson

- 1 Introduction 175
- 2 Background 176
- 3 Specific techniques 177

Culture methods 177

Duration of drug exposure and drug concentrations 179 Recovery period 182

CONTENTS

4	End-points 183				
	Cytotoxicity, viability	y, and	surviva	al 1	83
	Cytotoxicity and vial	oility	183		
	Survival (reproductiv	e inte	grity)	191	

- 5 Assay comparisons 192
- 6 Technical protocols 192
 Drugs and drug solutions 192
 Drug incubation 194
 Assay by survival and proliferative capacity 194
 Cytoxicity assays 201
- 7 Interpretation of results 210
 Relationship between cell number and cytoxicity index 21
 Dose-response curves 211
- 8 Pitfalls and troubleshooting 214
 Large standard deviations 214
 Variation between assays 214
 Stimulation to above control levels 214
 References 215

8 Fluorescence in situ hybridization

W. Nicol Keith

- 1 Introduction 221
- 2 Probes 222
- 3 Probe detection 228
- 4 A final word on the tricky bits 231
- 5 FISH resources 232
 Solutions 232
 Useful books 232
 Useful Web sites 232

References 233

9 Genetic modification

Majid Hafezparast

- 1 Introduction 235
- 2 Transfection 235

Calcium phosphate-DNA co-precipitation 237
Lipid-mediated gene transfer (lipofection) 238
Electroporation 240
Staining of cells for expression of β-galactosidase 24:
Rescue of episomal plasmids 244

3 Microcell-mediated chromosome transfer 245
Formation of micronuclei 246
Enucleation 247
Purification of microcells 248
Fusion of microcells to recipient cells 250
Selection of microcell hybrids 250

4 Irradiation fusion gene transfer 252
Use in mapping genes 253
Use in positional cloning 254
Irradiation doses 255

References 256

10 Epitheliai stem cell identification, isolation, and culture

David Hudson

- 1 Introduction 259
 Clinical application of cultured human stem cells 259
- 2 Basic principles for identification and purification of stem cells 260
- 3 Assessment of proliferative heterogeneity 260
- 4 Methods for the separation of different cell populations 265
 Isolation of cells by differential adhesion 266
 Separation of cultured and primary cells by flow and immunomagnetic sorting 270
- 5 Long-term maintenance of stem cells in culture 273
 Keratinocyte stem cells in culture 273
 Maintenance of non-epidermal epithelial cells in long-term culture 273
- 6 Stem cell characterization by immunocytochemistry 274
 Antibody markers of differentiated cell phenotypes 274
 Staining cell suspensions using cytospin preparations 277
 References 278

11 Senescence, apoptosis, and necrosis

Ian R. Kill and Richard G. A. Faragher

- 1 Introduction 281 Cellular senescence 281 Cell death 282
 - Differentiation and de-differentiation 282
- 2 Simple measures of the population dynamics of primary cultures 282
 Measurement of the growth fraction 283
 Determination of the necrotic fraction of the population 287
 Determination of the senescent fraction of the population 288
 Determination of the apoptotic fraction of the population using TUNEL 290
- Other techniques for analysing population dynamics 291
 Detection of apoptosis using DNA laddering 292
 Inhibition of apoptosis using peptide inhibitors of caspases 293
 Determination of the non-dividing fraction of a population by simplified haptotactic assays, 'Ponten Plates' 295

Determination of telomerase activity and telomere length 296 Acknowledgements 301

References 301

A1 List of suppliers 303

Index 311