OXFORD

evolution

an introduction

Stephen C. Stearns and Rolf F. Hoekstra

Contents

Prologue 1

Sexual cannibalism $\ I$ Rapid evolution $\ 2$ Molecular resolution of old systematic problems $\ 4$ Irreversibility: prior adaptation as subsequent constraint $\ 5$ The problem $\ 6$

Chapter 1 The nature of evolution 7

Introduction 7
A brief description of evolutionary biology 8
How evolutionary biologists think 8
Evolutionary change: adaptive and neutral 9
Information replicators and material interactors 13
Adaptation 13
Principles of genetic information transmission 18
Principles of phenotypic design for reproductive success 22
Speciation 28
Microevolution and macroevolution 29
Biological causation 29
Summary 30

Chapter 2 Adaptive evolution 35

Ouestions 31

Recommended reading 30

Landmarks in evolutionary biology 31

Introduction 35
Examples of natural selection and methods used to detect it 36
The ways of classifying selection 45
The strength of selection and the rate of evolutionary response 51
The context-dependence of selection 52
Cultural evolution 53

Summary 54 Recommended reading 54 Questions 55

Chapter 3 Neutral evolution 56

Introduction 56

The relationship between genetic variation and fitness 56

Experimental evolution in Escherichia coli 57

Reasons for no correlation between genetic variation and fitness 60

Mechanisms that cause random evolutionary change 61

Genetic drift 66

The significance of genetic drift in molecular evolution 67

Summary 69

Recommended reading 70

Questions 70

Chapter 4 Evolution as changes in the genetic composition of populations 71

Introduction 71

Genetic systems: sexual and asexual, haploid and diploid 72

Population genetic change under selection 75

Implications of population genetics for evolutionary biology 79

Quantitative genetic change under selection 81

Evolutionary implications of quantitative genetics 87

Population and quantitative genetics are being integrated 89

Summary 91

Recommended reading 91

Ouestions 92

Chapter 5 The origin and maintenance of genetic variation 93

Introduction 93

Mutation generates genetic variation 94

The effect of recombination on genetic variability 95

The amount of genetic variation in natural populations 96

Equilibrium models of the maintenance of genetic variation 100

Genetic diversity at mutation-drift balance 100

Genetic diversity at mutation-selection balance 101

Genetic diversity at a balance of different selection forces 103

Genetic diversity of complex quantitative traits 107

Summary 110

Recommended reading 111

Questions 111

Chapter 6 The expression of variation 112

Introduction 112

Induced responses: one genotype can produce several phenotypes 117 Methods for analyzing patterns of gene expression 118 Genotype and phenotype are sometimes only loosely coupled 124 Reasons for loose coupling of genotype and phenotype 125 Genes controlling developmental patterns are broadly shared 126 Seasonal polyphenism in butterflies 129 Adaptive plasticity regulated by plant phytochromes 131 Summary 132

Recommended reading 134

Questions 134

Chapter 7 The evolution of sex 135

Introduction 135

Variation in sexual life cycles 138

Patterns of sexual distribution 140

Consequences of sex 141

The evolutionary maintenance of sex: theoretical ideas 143

The evolutionary maintenance of sex: empirical evidence 147

Discussion 149

Summary 150

Recommended reading 151

Questions 151

Chapter 8 The evolution of life histories and sex ratios 152

Introduction 152

The evolutionary explanation of how organisms are designed 154

The evolution of age and size at maturation 156

The evolution of clutch size and reproductive investment 158

The evolution of life span and aging 164

The evolution of sex allocation 168

Summary 175

Recommended reading 176

Questions 176

Chapter 9 Sexual selection 178

Introduction 178 .

How did sexual selection originate? 181

Competition for mates 182

Mate choice 184

Evidence for sexual selection 189

What determines the strength of sexual selection? 192

Sexual selection in plants 195

Sexual selection on gametes: sperm competition and choice by eggs 195

Alternative explanations of sexual dimorphism 196

Summary 196

Recommended reading 197

Questions 197

Chapter 10 Multilevel selection and genomic conflict 198

Introduction 198

Multilevel natural selection 198

Two-level selection and genomic conflict 201

Genomic conflict in asexual systems 203

Genomic conflict in sexual systems 204

The cytoplasm as battleground for genomic conflicts 207

Importance of genomic conflicts in evolution 212

Summary 212

Recommended reading 213

Questions 213

Chapter 11 Speciation 214

Introduction 214

What is a species? 215

The origin of species 219

The experimental evidence 228

Summary 229

Recommended reading 230

Ouestions 230

Chapter 12 Systematics 232

Introduction 232

What is a phylogeny? 240

Cladistics 241

Molecular data and homoplasy 244

The theory and rationale of tree building 247

The genealogy of genes and the phylogeny of species 250

Summary 251

Recommended reading 251

Ouestions 251

Chapter 13 The history of life I: the evolutionary theater 253

Introduction 253

Some insights of history 253

The geological theater 260

Local geological catastrophes 269

The mass extinctions: when, who and how 271

Patterns of stasis, speciation, and morphological change 274

Summary 277

Recommended reading 278

Questions 278

Chapter 14 The history of life II: key events in evolution 280

Introduction 280

The origin of life 281

The evolution of chromosomes 283

The origin of multicellularity 284

The evolution of reproductive and non-reproductive units: germ line and soma 285

Principles involved in key evolutionary events 286

Summary 290

Recommended reading 291

Questions 291

Chapter 15 Molecular insights into history 292

Introduction 292

Deep time: From the first bacteria to the first eucaryotes 293

The evolution of developmental mechanisms 297

African Eve and polymorphisms in genes for immune response 303

Recent human migrations and colonizations 310

Summary 314

Recommended reading 314

Questions 315

Chapter 16 Comparative methods 316

Introduction 316

Examples of phylogenetic trait analysis 317

An example of comparative trend analysis 321

Species are not independent samples 323

General comments on comparative methods 328

Summary 329

Recommended reading 329

Questions 330

CONTENTS

Chapter 17 Conclusion 331

The reality and reliability of evolution 331
Evolutionary biology has a complex causal structure 331
Evolution is happening all around us—and to us 332
The scope of evolutionary explanation 332
The major preoccupations of evolutionary biology 333
Two major puzzles: the fixed and the variable 334
Other unsolved problems 335
What are the limits to evolutionary prediction? 336
Looking ahead 337
Summary 338
Recommended reading 339
Questions 340

Glossary 341

Literature cited 349

Index 367

http://www.oup.co.uk/best.textbooks/biology/evolution