Principles and Techniques of

Electron Vicroscopy

Biological Applications

Fourth Edition

M. A. Hayat

Preface	page xvii	Phosphate Buffers	25
•		PIPES Buffer	25
CHAPTER ONE	-	Tris Buffer	25
HAZARDS, PRECAUTIONS, AND SAFE		Veronal Acetate Buffer	25
HANDLING OF REAGENTS	1	Choice of Buffer	26
	_	Preparation of Buffers	26
BUFFERS	1	Cacodylate (0.2M)	26
FIXATIVES	1	Collidine	26
SOLVENTS	2	Buffer	26
EMBEDDING MATERIALS	2	HEPES	26
STAINS	2	MOPS	26
		PIPES (0.3M)	27
		Phosphate	27
CHAPTER TWO		Phosphate (Sörensen)	27
CHEMICAL FIXATION	4	Tris(hydroxymethyl)aminomethane	
INTRODUCTION	4	Maleate (0.2M)	27
FACTORS AFFECTING THE QUALITY		Veronal Acetate	27
OF FIXATION	6	ALDEHYDES	27
Tissue Specimen Size	7	Glutaraldehyde	28
Osmolarity and Osmolality	8	Nature of Commercial Glutaraldehyde	28
Cultured Cells	11	Reaction with Proteins	32
Vehicle Osmolarity	11	Mechanism of Protein Crosslinking	33
Methods for Adjusting the Osmolarity	12	Reaction with Lipids	33
Recommended Osmolality	12	Reaction with Nucleic Acids	33
Measurement of Osmolarity	13	Reaction with Carbohydrates	34
Ionic Composition of Fixative Solution	14	Osmolarity of Glutaraldehyde	34
Fixative pH	15	Osmolality of Glutaraldehyde	3.5
Fixative Penetration	17	Temperature	36
Temperature of Fixation	18	Concentration of Glutaraldehyde	36
Duration of Fixation	19	pН	37
Concentration of Fixative	20	Method for Using Glutaraldehyde	
Effects of Added Substances	20	at Higher pH Values	37
BUFFERS	22	Changes in pH During Fixation	
Buffer Types	23	with Glutaraldehyde	37
Cacodylate Buffer	24	Rate of Penetration	38
Collidine Buffer	24	Specimen Shrinkage	39
HEPES Buffer	24	Limitations of Glutaraldehyde	39
MOPS Buffer	2.5	Storage of Glutaraldehyde	41
		•	

viii CONTENTS

Glutaraldehyde-Containing Fixatives	41	Spleen	73
Formaldehyde	42	Perfusates	73
Reaction with Proteins	42	Procedure	73
Reaction with Lipids	43	Immersion Fixation	73
Reaction with Nucleic Acids	44	Dripping Method	74
Reaction with Carbohydrates	45	Injection Method	75
Preparation of Formaldehyde Solution	45	ANESTHESIA	75
ALDEHYDE MIXTURES	45	SIMULTANEOUS FIXATION FOR LIGHT AND	
OSMIUM TETROXIDE	45	ELECTRON MICROSCOPY	76
Reaction with Lipids	46	TISSUE STORAGE	76
Staining of Unsaturated Lipids	48	POSTMORTEM CHANGES	77
Reaction with Proteins	49	CRITERIA FOR STATISFACTORY SPECIMEN	
Reaction with Lipoproteins	50	PRESERVATION	79
Reaction with Nucleic Acids	50	ARTIFACTS	80
Reaction with Carbohydrates	52		
Reaction with Phenolic Compounds	53		
Method	53	CHAPTER THREE	-
Reaction with Alkaloids	53	RINSING, DEHYDRATION, AND EMBEDDING	85
Loss of Lipids	54	INTRODUCTION	85
Loss of Proteins	55	RINSING	85
Changes in Specimen Volume	56	DEHYDRATION BEFORE EMBEDDING IN	
Parameters of Fixation	57	WATER-IMMISCIBLE RESINS	86
Concentration of Osmium Tetroxide	57	Acetone and Ethanol	86
Temperature of Fixation	57	Undesirable Effects of Dehydration	88
Rate of Penetration	57	Incomplete Dehydration for	
Duration of Fixation	59	Lipid Preservation	89
Removal of Bound Osmium from Sections	59	INFILTRATION OF RESIN	89
Osmium Blacks	59	POLYMERIZATION	91
Preparation and Precaution in the Handling		Polymerization by UV Irradiation	91
of Osmium Tetroxide	60	Polymerization of Epoxy Resins	
OSMIUM TETROXIDE AND	1	by Heat	91
GLUTARALDEHYDE MIXTURE	61	Mechanism of Crosslinking	91
PERMANGANATES	62	UNDESIRABLE EFFECTS OF INFILTRATION	
METHODS OF FIXATION	62	AND POLYMERIZATION	93
Vascular Perfusion	63	STANDARD PROCEDURE FOR FIXATION,	
Methods of Vascular Perfusion	66	RINSING, DEHYDRATION,	
General Method	66	AND EMBEDDING	94
Aorta	67	EMBEDDING MEDIA	95
Arteries	67	Water-Immiscible Embedding Media	97
Central Nervous System	68	Epoxy Resins	97
Embryo	68	Sectioning Properties	98
Heart	69	Epon 812 (LX-112, Epox 812, Polybed 812,	
Perfusates	69	Eponate 12, Taab 812, Agar 100,	
Procedure	69	Quetol 812)	98
Kidney	69	Embedding Formulation	98
Liver	70	Araldite	101
Perfusate	70	Embedding Formulations	101
Procedure	70	Vinylcyclohexene Dioxide (ERL 4206,	
Lung	71	Spurr Mixture)	102
Muscle (Skeletal Muscle of Rat Hind Limb)	72 72	Embedding Formulation	102
Perfusate	72 72	Quetol 651	103
Procedure	72	Methyl Methacrylate	103
Ovary	72 73	Embedding Formulation	103
Perfusate	72	Water-Miscible Embedding Media	104

Glycol Methacrylate	105 l	CHAPTER FOUR	
Limitations of Glycol Methacrylate	106	SECTIONING	139
Serial Sections	107	INTRODUCTION	139
Embedding Formulations	107	GLASS KNIVES	140
Prepolymerization Procedure	108	Selection of Plate Glass	141
Dehydration and Polymerization	108	Preparation of Glass Knives	141
LOWICRYLS	109	Examination of Glass Knives	143
Properties of Lowicryls K4M, K11M,		Defects on Glass Knives	143
HM20, and HM23	109	Tungsten Coating of Glass Knives	144
Progressive Lowering of Temperature		DIAMOND KNIVES	144
Dehydration and Embedding		Examination of Diamond Knives	147
in Lowicryls	111	Care of Diamond Knives	148
Limitations of Lowicryls	111	Cleaning the Cutting Edge	149
Comparison of Lowicryl K4M with Epon	112	SAPPHIRE KNIVES	151
LR GOLD	114	MECHANISM OF THIN SECTIONING	152
Procedure	114	SECTION THICKNESS	152
LR WHITE	114	Relation Between Section Thickness and	
POLYETHYLENE GLYCOL (CARBOWAX)	115	Interference Color	155
MIXED RESIN EMBEDDING	116	Intrasection Variation in Thickness	156
Vinylcyclohexene Dioxide-n-Hexenyl		Measurement of Section Thickness	157
Succinic Anhydride	117	SECTIONING ANGLES	159
PROPERTIES OF THE FINAL		Clearance Angle	159
RESIN BLOCK	118	Knife Angle	159
Hardeners	118	SPECIMEN BLOCK	160
Modifiers	118	Trimming and Preparation of Block Face	160
Catalysts	119	Hand Trimming	161
VISCOSITY AND AGITATION	119	Mechanical Trimming	163
SPECIMEN ORIENTATION	121	Mesa Technique	164 165
Flat Embedding	123	Mounting the Specimen Block	166
Labeling	124 124	PREPARATION OF TROUGHS	167
RAPID EMBEDDING	124	MOUNTING THE KNIFE	170
GRADUAL, PROGRESSIVE DEHYDRATION AND EMBEDDING	127	TROUGH FLUIDS CUTTING SPEED	171
LOW DENATURATION EMBEDDING	129	SECTION FLOTATION	171
REVERSIBLE EMBEDDING	130	SECTION FLOTATION SECTION VIEWING	174
Methods	131	SELECTION AND HANDLING OF GRIDS	175
REEMBEDDING	133	SECTION COLLECTION	178
Reembedding of Tissue Poorly Embedded	155	Mechanical Devices to Collect Sections	181
in Resin	133	Static Electricity	181
Reembedding of Thick Resin Sections	134	SECTIONING PROCEDURE	182
Method 1	134	IMPROVEMENTS IN SECTIONING	184
Method 2	134	SURFACE CHARACTERISTICS OF	
Method 3	134	THIN SECTIONS	184
Reembedding of Paraffin-Embedded Tissue		Section Relief	186
in Resin	134	SECTION DEFORMITIES	186
Two-Step Method	134	Normal Surface Damage	186
One-Step Method	134	Section Compression	191
Reembedding of Paraffin-Embedded Tissue		Factors Affecting the Compression	191
Sections in Resin	135	Removal of Section Compression	192
Method 1	135	Section Wrinkling	193
Method 2	136	Section Shrinkage	194
Method 3	136	Chatter	195
Pop-Off Method for Reembedding	137	SECTION CONTAMINATION AND DAMAGE	197
Reembedding of Tissue Culture Cells	137	SERIAL SECTIONING	199

Transfer of Serial Sections	200	Carbon Films for Cryoelectron Microscopy	22
Section Thickness for Serial Sectioning	203	Procedure	22
Three-Dimensional Reconstruction	204	GRAPHITE FILMS	22
ELECTRON MICROSCOPE TOMOGRAPHY	205	Preparation of Graphite Oxide	230
SEMITHIN SECTIONING	206	QUARTZ FILMS	23
Ralph Knife	207	PERFORATED FILMS	23:
Sectioning	208	Perforated Formyar Films	23
Section Transfer	208	Method I	23
CORRELATIVE MICROSCOPY	209	Method II	23
		Method III	233
		Method IV	22
CHAPTER FIVE		Support Film with Large Holes (Micronet)	234
SUPPORT FILMS	211	Perforated Carbon Film	234
INTRODUCTION	211	Perforated Collodion-Carbon-Graphite	25-
MATERIALS FOR SUPPORT FILMS	212	Oxide Film	235
PLASTIC FILMS	212	Holey Support Films for Cryoelectron Microscopy	
Estimation of Plastic Film Thickness	213	Procedure	y 23. 236
Preparation of Plastic Films	213	WETTABILITY OF SUPPORT FILMS	237
Formvar Film Cast on Glass	214	Construction (Figs. 5.12 and 5.13)	238
Formvar Film Cast on Water	216	Operation	239
Formvar Film Cast on Mica	217	ADSORPTION PROPERTIES OF	237
Collodion Film Cast on Glass	217	SUPPORT FILMS	241
Collodion Film Cast on Water	217	SCITORI ILLING	241
Butvar B-98 Support Film	218		
Preparation of Butvar Film	218	CHAPTER SIX	
Polystyrene Films	218	POSITIVE STAINING	242
Transfer of Plastic Films onto Grids	219	INTRODUCTION	242
Plastic Coating of Single-Hole or Slotted Grids	219	IMAGE CONTRAST	247
Repairing of Plastic Films	220	FACTORS AFFECTING CONTRAST	248
VERMICULITE FILMS	220	DURATION OF STAINING	249
CARBON FILMS	220	SIZE OF STAIN AGGREGATES	
Surface Topography of Carbon Films	221	STAIN PENETRATION	250 250
Preparation of Carbon Films	222	STAIN SPECIFICITY	251
Carbon Films Prepared by Evaporation	LLL	STAINS	251
of the Carbon Filament	223	Alcian Blue	252
Substrates for Carbon Evaporation	223	Purification of Alcian Blue	253
Carbon Film Deposited Directly on	223	Chemical Composition	253
Sections Sections	223	Mechanism of Staining	254
Preparation of Adhesive-Coated Grids	223	Reaction with Nucleic Acids	254
for Carbon Coating	224	Critical Electrolyte Concentration	255
Carbon Film Cast on Glycerin	224	Role of pH	256
Carbon Film Prepared on Glass	224	Rate of Staining	256
Procedure	225	Fixation and Staining Procedures	257
Carbon Film Prepared on Mica	225	Bismuth	257
Procedure 1	225	Mechanism of Staining	259
Procedure 2	225	Fixation and Staining Procedures	260
Carbon Film Deposited on a Plastic Substrate	226	General Staining	260
Procedure	226	Staining of Mucosubstances, Glycoproteins,	200
Method	226	and Polysaccharides	260
Carbonized Plastic Film	227	Staining of Polysaccharides without	200
Procedure	227	Periodic Acid	260
Carbon Film Supported by Perforated Plastic		Selective Staining of Nucleoproteins	200
Substrate	228	(Locke and Huie, 1977)	260
Procedure	228	Staining of Synapses	260
		···· -/ -/ -/ -/	

COLLOIDAL GOLD	260	Staining Specificity for Synaptic Vesicles	282
Advantages of Colloidal Gold	261	Staining Solutions	283
Stabilization of Colloidal Gold	262	Zinc Iodide Solution	283
Size of Colloidal Gold Particles	263	Final Solution	283
Determination of Gold particle size	264	Sodium Iodide-Osmium Tetroxide	285
Procedure	264	IRON	285
Preparation of Colloidal Gold	264	Mechanism of Staining	285
Determination of Optimal pH for Preparing		pН	287
Gold Sol	265	Rate of Penetration	288
Influence of Embedding Media on the Colloidal		Mode of Staining	288
Gold Method	265	Staining Solutions	288
Influence of Other Factors on the Colloidal		Colloidal Ammonium Ferric Glycerate	289
Gold Method	266	Positive Ferric Oxide Solution	289
Protein A	266	Negative Ferric Oxide Solution	289
Preparation of Protein A-Gold Complex	267	Negative Colloidal Ferric Hydroxide	290
pН	267	Iron Diamine	291
Determination of Optimal pH for		High Iron Diamine	291
Preparing Protein A-Gold Complex	267	Low Iron Diamine	291
Determination of Optimal Stabilizing		LANTHANUM	292
Amount of Protein A	268	Mechanism of Staining	292
Procedure for Preparing Protein A-Gold		Fixation and Staining Procedures	293
Complex	268	LEAD	294
Labeling	269	Mechanism of Staining	294
Nonspecific Labeling	269	Reaction with Membranes	296
Considerations in the Use of Protein A-Gold		Reaction with Glycogen	296
Complex	269	Reaction with Other Cell Components	297
Possible Limitations of the Protein A-Gold	,	Lead Acetate	297
Complex Method	270	Lead Aspartate	298
Multiple Immunogold Staining Methods	271	Lead Citrate	299
Procedure 1	272	Lead Hydroxide	300
Procedure 2	273	Lead Tartrate	301
Procedure 3	274	En Bloc Staining with Lead	301
Immunogold-Silver Method	274	Double-Lead-Staining Method	302
Procedures	276	Glycogen Staining	302
Thin Resin Sections	276	Tricomplex Fixation and Staining	302
Thick Resin Sections	276	OSMIUM TETROXIDE	303
Immunoglobulin-Colloidal Gold	_, _	OSMIUM TETROXIDE-IMIDAZOLE	,,,,
Method	277	COMPLEXES	304
Immunolabeling of Thin Cryosections	277	Osmium Tetroxide-Imidazole	305
Lectin-Colloidal Gold Complex	277	Osmium Tetroxide-3-amino-1,2,4-triazole	305
Lectin-Horseradish Peroxidase-Colloidal		Potassium Osmate-3-amino-1,2,4-triazole	305
Gold Method	278	OSMIUM TETROXIDE-POTASSIUM	505
Lectin-Horseradish Peroxidase-Colloidal		FERRICYANIDE OR FERROCYANIDE	305
Gold-Ruthenium Red Method	279	Fixation and Staining Procedures	307
Enzyme-Colloidal Gold Method	279	OXALATE-GLUTARALDEHYDE	308
Preparation of Enzyme-Gold Complex	279	PHOSPHOTUNGSTIC ACID	309
Labeling	280	Mechanism of Staining	309
Light and Electron Microscopic		Fixation and Staining Procedures	313
Immunocytochemistry on the Same		POTASSIUM PERMANGANATE	315
Section	280	POTASSIUM PYROANTIMONATE	316
DIAMINOBENZIDINE-OSMIUM TETROXIDE	281	Mechanism of Staining	316
IODIDE-OSMIUM TETROXIDE MIXTURES	281	Effects of Fixation	317
Zinc Iodide-Osmium Tetroxide	281	Specificity of Reaction	317
Mechanism of Staining	281	Reproducibility of Results	318
- C		l	

xii CONTENTS

Limitation of the Method	319	Uranyl Acetate	342
Fixation and Staining Procedures	320	Uranyl Nitrate	343
RUTHENIUM RED	320	Mechanism of Staining	343
Penetration	321	Reaction with Nucleic Acids	344
Mechanism of Staining	321	Reaction with Proteins	345
Fixation and Staining Procedures	323	Reaction with Lipids and Membranes	345
SILVER	324	Factors Affecting Uranyl Staining	346
Mechanism of Staining	324	pH	346
Role of Fixation	326	Buffer Types	347
Fixation and Staining Procedures	327	Fixation and Embedding Methods	347
Ammoniacal Silver	327	Overall Effect on Tissues	347
Silver Methenamine	327	Staining Solutions	348
Silver Nitrate	330	Uranaffin Reaction	350
Impregnation Techniques	330	Procedure	350
Silver Proteinate	331	STAINING PROCEDURES	350
Periodic Acid-Silver Method	332	Double Staining with Uranyl Acetate and	
Periodic Acid-Chromic Acid-Silver Method	332	Lead Citrate	350
Staining of Nucleolar Organizer Region	332	Effect of Washing on Staining	351
Silver Staining In Situ	333	Multiple-Grid Staining	352
Silver Staining on Sections	333	MULTIPLE STAINING	353
SILVER LACTATE-OSMIUM TETROXIDE	334	SECTION CONTAMINATION AND	
SODIUM TUNGSTATE	334	ITS REMOVAL	353
TANNIC ACID	334	Precautions to Minimize Section Contamination	354
Reaction with Proteins	335	Removal of Section Contamination	356
Reaction with Carbohydrates	336	SELECTIVE HEAVY METAL STAINING	
Reaction with Lipids	336	FOR HIGH-RESOLUTION	
Fixation and Mordanting Effects		ELECTRON MICROSCOPY	357
of Tannic Acid	336	STAINING FOR HIGH-VOLTAGE	
Penetration	337	ELECTRON MICROSCOPY	357
Negative Staining with Tannic Acid	337	Staining Procedures	358
Fixation and Staining Procedures	337	STAINING OF THIN CRYOSECTIONS	359
General Procedures	337	STAINING OF SEMITHIN SECTIONS	360
Visualization of Mucosubstances	337	Solutions	363
Visualization of Collagen and Elastin	337	Procedure	363
Visualization of Cholinergic Synaptic Junctions	338	Selected Staining Methods for Semithin	
Visualization of Exocytosis	339	Sections	363
Tannic Acid–Glutaraldehyde–OsO4		Azure B for Plant Tissues	364
Method	339	Procedure	364
Tannic Acid in Ringer's Solution		Results	364
Method	339	Basic Fuchsin and Methylene Blue	364
TARI Method by Vascular Perfusion	339	Staining Solution	364
Modified TARI Method	340	Procedure	364
Tannic Acid Medium	340	Results	364
Procedure	340	Methylene Blue-Azure II-Basic Fuchsin	364
THIOSEMICARBAZIDE AND		Results	364
THIOCARBOHYDRAZIDE	340	Hematoxylin-Malachite Green-Basic Fuchsin	364
Periodic Acid-Thiosemicarbazide or		Staining Solutions	364
Thiocarbohydrazide-Silver Proteinate	340	Procedure	363
Periodic Acid-Thiosemicarbazide or	244	Results	365
Thiocarbohydrazide-Osmium Tetroxide	341	Hematoxylin and Phloxine B	365
Modified Method	341	Procedure	365
Sodium Periodate-Thiosemicarbazide-Osmium	244	Results	365
Tetroxide	341	Methyl Green and Methyl Violet	366
URANYL PREPARATIONS	342	Staining Solution	366

Procedure	366	Sputum	392
Results	366	Tears	393
Toluidine Blue and Acid Fuchsin	366	Tissue Scrapings	393
Procedure	366	Urine	393
Results	366	GENERAL METHODS FOR PLANT VIRUSES	393
		Rapid Procedures	393
		Viruses in Crude Extract	393
CHAPTER SEVEN		IMMUNOELECTRON MICROSCOPY	394
NEGATIVE STAINING	367	Classical Immunoelectron Microscopy	394
INTRODUCTION	367	Immunosorbent Electron Microscopy	395
MECHANISM OF NEGATIVE STAINING	368	Antigen-Coated-Grid Method	395
HIGH-RESOLUTION ELECTRON		Procedure	395
MICROSCOPY	370	Protein A-Coated-Grid Method	395
SPECIMEN PREFIXATION	370	Serum-In-Agar-Diffusion Method	39€
Negative Staining after Fixation Technique	371	Procedure	396
NEGATIVE STAINS	372	Protein A-Coated-Bacteria Technique	396
Uranyl Acetate	372	Procedure	397
Uranyl Citrate	374	Virus-Immune Complex Electron Microscopy	397
Uranyl Formate	374	Procedure	397
Potassium (or Sodium) Phosphotungstate	374	Immunogold Staining Method	398
GENERAL METHODS	377	On-Grid Method	398
Basic Considerations	377	Procedure	399
One-Step (Simultaneous) Method	377	Suspension Method	399
Negative Stain-Carbon Method	378	Grid-Cell-Culture Technique	399
Two-Step (Sequential) Method	379	Procedure	399
Single- or Double-Carbon-Layer Method	381		
One-Sided Negative Staining Method	382		
Paper-Filtration Method	382	CHAPTER EIGHT	
Pseudoreplica Method	383	LOW TEMPERATURE METHODS	400
Agar-Filtration Method	383	INTRODUCTION	400
Freeze-Dry Negative Staining	386	CRYOFIXATION	400
Covering Method for Thin Cryosections	386	Advantages of Cryofixation	402
Cryonegative Staining	386	CRYOPROTECTANTS	402
Cryoelectron Microscopy	388	Penetrating Cryoprotectants	403
Procedure	388	Nonpenetrating Cryoprotectants	404
GENERAL METHODS FOR HUMAN	300	VITRIFICATION	404
VIRUSES	389	LIQUID CRYOGENS	405
Allantoic Fluid	390	RATE OF COOLING	406
Biopsy or Autopsy Tissues	390	METHODS OF FREEZING	406
Blister Fluids	390	Conventional Freezing Procedure	406
Brain Tissue	390	Plunge-Freezing Method for Conventional and	
Breast Milk	390	Ultrarapid Freezing	407
Cell Cultures	390	Procedures	407
Cerebrospinal Fluid	391	Cold Metal Block Freezing Method	408
Eye Biopsy	391	Procedure	409
Feces	391	Cryogen-Jet-Freezing Method	410
Hard Tissues	391	Procedure	411
Liver or Kidney Biopsy	391	Spray-Freezing Method	411
Nodules	391	Procedure	412
Respiratory Secretions	391	High-Pressure-Freezing Method	412
Serum	392 392	Specimen Holders	414
Skin Lesions	392 392	Limitations of High-Pressure Freezing	414
Skin Tumors	392 392	Popsicle-Freezing Method	415
Skin Varts	392 392	Punch-Freezing Methods	415
OKIII Warts	372	r anch-licernik Methods	413

Specimen Preparation by Sandwich	- 1	Callose	451
Freezing	415	Immunogold Labeling of Callose	451
Sandwich Freezing of Monolayer	- 1	Cytochemical Localization of Callose	
Cell Cultures	416	in the Seed Coat	452
Feezing Tissues In Situ	416	Cellulose	452
CRYOPRESERVATION IN THE PRESENCE	1	Enzyme-Linked Colloidal Gold Localization	
OF MICROWAVE IRRADIATION	417	of Cellulose	452
STORAGE OF FROZEN SPECIMENS	418	Preparation of Enzyme-Gold Complex	452
FREEZE DRYING	419	Cutin	453
Procedure	419	Procedures	454
FREEZE SUBSTITUTION	421	Hemicelluloses	454
Method for Epoxy Resins	423	Procedure	455
Method for Lowicryls	423	Immunogold Labeling of Xylans	455
FREEZE FRACTURING	424	Immunogold-Silver Staining of Glucuronoxylan	ı
Procedure	425	for Light Microscopy	456
Cleaning of Replicas	426	Lignin	456
FREEZE ETCHING	427	Procedures	457
Procedure	427	Immunocytochemical Studies of Three Lignins	458
EMBEDDING AT LOW TEMPERATURES	428	Immunogold Labeling of Lignin	
	428	in Woody Tissues	458
Freeze Drying and Embedding	428	Pectins	458
Freeze Substitution and Embedding	420	Immunogold Labeling of Pectin in Tissues	460
LIMITATIONS OF LOW-TEMPERATURE	400	Procedure 1: JIM7 or JIM5 Antibody	460
METHODS	429	Procedure 2: RG-1 Antibody	460
HAZARDS	431		700
CRYOULTRAMICROTOMY	431	Immunogold Labeling of	461
Quality of Thin Cryosections	432	Rhamnogalacturonan II	401
Section Transfer	433	Enzyme-Colloidal Gold Labeling	462
Preparation of Thin Cryosections	433	of Homogalacturonic Acid	402
Procedure	434	Immunogold Labeling of Pectin	463
Section-Cutting Artifacts	435	in Cultured Cells	463
Limitations of Cryoultramicrotomy	436	Proteins	
CRYOTRANSMISSION ELECTRON		Expansins	464 465
MICROSCOPY	436	Antibodies	463
		Immunogold Labeling of Hydroxyproline-Rich	4.05
		Glycoprotein	465
CHAPTER NINE	400	Immunogold Labeling of Extensin	465
PLANT TISSUES	439	Immunogold Labeling of β -(1 \rightarrow 4) and	
INTRODUCTION	439	β-(1 → 6)-D-Galactan	465
CELL WALL	440	Suberin	466
Mechanism of Cell Wall Expansion	440	Conventional Method	467
VACUOLAR SYSTEM	443	Iodine Potassium Iodide Method	467
PROBLEMS IN PROCESSING PLANT TISSUES	444	Hydrogen Peroxide Method	467
Bubble Problem	446	Potassium Permanganate Method	467
Permeabilization of Cell Walls	446	SPECIFIC METHODS	467
Vacuum Infiltration	448	Dry Plant Specimens	467
GENERAL METHOD OF FIXATION		Epidermal Hair of Seeds	468
AND EMBEDDING	448	Leaves	468
GENERAL METHOD OF FIXATION AND		Plant Tissues (Hard)	468
EMBEDDING OF WOODY TISSUES	449	Plant Tissues (Soft)	468
MICROWAVE-ASSISTED FIXATION	449	Plasmodesmata	468
METHODS FOR STUDYING CELL WALL		Pollen Grains (Fossil Material)	469
COMPONENTS	449	Pollen Walls	469
Antibodies	450	Potato Tuber	470
Antibodies to Localize Cell Wall Components	450	Roots	470
		1	

Seeds	470	APPLICATION OF MICROWAVE HEATING	
Seeds (Dry)	470	TO EPITOPE RETRIEVAL	483
Seeds (Water-Impermeable Coat)	470	Duration of Microwave Heating	483
Wood	471	EPITOPE RETRIEVAL METHODS	484
WOOL		Nonheating Methods	484
		Detergents	484
CHAPTER TEN		Procedures	484
APPLICATIONS OF MICROWAVE HEATING		Proteolytic Enzyme Digestion	485
TO MICROSCOPY	472	Procedures	486
INTRODUCTION	472	Ultrasound Treatment	486
MECHANISM OF MICROWAVE HEATING	472	Procedure	486
FIXATION	473	Heating Methods	487
Effect of Microwave Heating on Formaldehyde		Wet Autoclave Treatment	487
Fixation	475	Procedure	487
Effect of Heating on Fixation with		General Procedure for Epitope Retrieval	
Glutaraldehyde	475	by Microwave Heating	487
Osmium Tetroxide-Microwave Heating	477	Epitope Retrieval with Enzyme Digestion and	
ROLE OF MICROWAVE HEATING IN		Microwave Heating	490
ENZYME CYTOCHEMISTRY	477	Epitope Retrieval with Microwave Heating	
DEHYDRATION AND EMBEDDING		and Ultrasound	490
FOR LIGHT MICROSCOPY	477	EPITOPE RETRIEVAL ON RESIN SECTIONS	
MICROTOMY OF PARAFFIN SECTIONS	479	BY MICROWAVE HEATING	491
RESIN EMBEDDING IN MICROWAVE		Procedure for Electron Microscopy	492
OVENS	479	Rapid, Cold Fixation with Microwave Heating	
USE OF HEAT FOR STAINING	479	for Electron Microscopy	493
IMMUNOHISTOCHEMISTRY AND		Fixative (pH 7.4)	493
IMMUNOCYTOCHEMISTRY	480	Microwave Oven	493
PROBLEM OF EPITOPE RETRIEVAL		Procedure	493
STANDARDIZATION	481		
ROLE OF MICROWAVE HEATING		References	495
IN EPITOPE RETRIEVAL	482	Rejevences	
CARE AND USE OF A MICROWAVE OVEN	482	Index	533