DIGITAL SIGNAL PROCESSING

An Overview of Basic Frinciples

Jack Cartinhour

CONTENTS

NTI	RODU	CTION	1			
1	LINEAR, SHIFT-INVARIANT CONTINUOUS TIME SYSTEMS					
	1–1 Time Domain Description 5					
	1-2	The Laplace Transform and System Transfer Functions 7				
	1–3	Impulse Response 13				
	1–4	Convolution 15				
	1-5	BIBO Stability of LSI Systems 16				
		Problems 17				
	,					
2	FREQUENCY DOMAIN ANALYSIS FOR LSI CONTINUOUS TIME SYSTEMS					
	2-1	Complex Numbers and Complex Functions of a Real Variable 23				
	2–2	Introduction to the Frequency Response Function 26				
	2–3	Complex Exponential Signals and Negative Frequency 30				
	2–4	Frequency Response Function: Relationship to System Impulse Response 32				
	2–5	Steady-State Response to Periodic Signals 33				
		Problems 35				
3	FOU!	RIER TRANSFORM ANALYSIS OF CONTINUOUS	39			
	3-1	The Fourier Transform, Signal Spectrum, and Frequency Response 39	,			
	3–2	Relationship of Fourier and Laplace Transforms 40				
	3–3	Relationship Between Frequency Response Function and System Poles and Zeros 41				

xii | CONTENTS

3–4	Fourier Transform Convolution Theorems 45						
3–5	Fourier Transform Time and Frequency Shifting Theorems 46						
3–6	Fourier Transform Symmetry Properties 48						
3–7	Fourier Transform Examples 50						
	Problems 65						
	TERWORTH AND CHEBYSHEV LOWPASS HIGHPASS FILTERS	71					
4–1	Frequency Response Function: Butterworth Lowpass Filter 71	ď					
4–2	Frequency Response Function: Chebyshev Lowpass Filter 73						
4–3	Transfer Functions for Normalized Lowpass Filters 80						
4–4	Lowpass-to-Lowpass Transformation 89						
4–5	Active Lowpass Filter Circuits 93						
4–6	Highpass Filters 96						
4–7	Required Filter Order 102						
	Problems 107						
	,						
LINE	AR, SHIFT-INVARIANT DISCRETE TIME SYSTEMS	109					
5–1	Time Domain Description 109						
5–2	Impulse Response and Convolution 116						
5–3	The Z Transform 122						
5-4	Transfer Function of a Discrete Time System 131						
5–5	BIBO Stability of LSI Discrete Time Systems 137						
5–6	The Z Transform and System Analysis 140						
	Problems 153						
	QUENCY DOMAIN ANALYSIS OF DISCRETE E SYSTEMS	161					
6–1	Frequency Response Function 161						
6–2	Steady-State Response to Periodic Signals 165						
6–3	The Discrete Time Fourier Transform 166						
6-4	DTFT Symmetry and Periodicity 168						
6–5	DTFT of a Sinusoidal Sequence 174						

CONTENTS | xiii

		VVIII.	• . AIII					
	6-6	Relationship Between the Fourier Transform and the DTFT 175						
	6–7	Discrete Time Processing of Continuous Time Signals 182						
	6–8	Relationship Between Frequency Response Function and System Poles and Zeros 185						
	6–9	DTFT Shifting and Modulation Theorems 192						
	6–10	DTFT Convolution Theorems 194						
	6-11	The Rectangular Window and Its Spectrum 196						
	6–12	DTFT of a Truncated Sinusoid 200						
.*	6–13	Ideal Lowpass Filter 205						
	6–14	A Simple FIR Lowpass Filter 207						
	6–15	Systems Having Generalized Linear Phase 213						
	6–16	Phase Functions: Principal Value Versus Unwrapped Phase 216						
		Problems 218						
7	SAM	PLING THEOREM AND REAL WORLD DIA CONVERSION	227					
•	7–1	•						
	7 - 2	Relationship Between the Fourier Transform and the DTFT 227 The Sampling Theorem and Ideal D/A Conversion 231						
	7–3	The Sampling Theorem and Ideal D/A Conversion 231 Real-World D/A Conversion 233						
	7–3	Problems 237						
		Troblems 257						
8	DISCI	SCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER ANSFORM (FFT)						
	8–1	The DFT and Its Relationship to the DTFT 239	239					
	8–2	The Fast Fourier Transform (FFT) 242						
	8–3	Zero Padding 242						
	8–4	The DFT and Convolution 249						
		Problems 250						
9	DESI	GN OF FIR FILTERS	050					
	9-1		253					
	9–1 9–2		,					
	9-2 9-3	FIR Filter Design Using the Window Method 254						
		The Kaiser Window 260						
	9-4	4 Empirical Formulas for FIR Lowpass Filter Design Using the Kaiser Window Method 266						

xiv | CONTENTS

	9–5	FIR Bandpass, Highpass, and Bandstop Filters Designed Using Kaiser Window Method 268	g the		
	9–6	Design of FIR Filters Using the Parks-McClellan Algorithm	277		
	9–7	Effects of Coefficient Quantization in FIR Filters 293			
	9–8	Scaling to Prevent Overflow 295			
		Problems 298			
10		GN OF IIR FILTERS USING THE BILINEAR NSFORMATION	301		
	10-1	Introduction 301			
	10-2	The Bilinear Transformation 302			
	10–3	The Design Problem 306			
	10-4	Examples 307			
	10-5	Required Filter Order 317			
	106	Alternate Second-Order Structures 321			
		Problems 325			
		,			
11	ADAPTIVE FIR FILTERS USING THE LMS ALGORITHM				
	11-1	General Problem 327			
	11-2	LMS Algorithm Derivation 329			
	11–3	An Application: Suppression of Narrowband Interference	331		
		Problems 340			
12	RAN CON	DOM SIGNALS AND POWER SPECTRA, A/D IVERSION NOISE, AND OVERSAMPLING	341		
	12-1	Introduction 341			
	12-2	Discrete Time Random Signals 342			
	12-3	Random Signals and LSI Systems 347			
	12–4	Zero Mean White Noise Random Signal 350			
	12-5	A/D Conversion, Quantization Noise, and Oversampling	352		
	12–6	Decimation and Interpolation 359			
		Problems 370			

CONTENTS | xv

	•	-	_	a 1		Έ	•
-		•	-	nu	•	:=	
			_			-	

Convolution 373

Programming FIR Filter Algorithms in Higher-Level Languages B

D

381 385

Derivation of Equation (10-8) Parseval's Theorem 387

BIBLIOGRAPHY 391

INDEX 393