

Practical Statistics and Experimental Design for Plant and Crop Science

Alan G. Clewer

David H. Scarisbrick

Contents

Trejace			xi
Chapter 1	Basic	c Principles of Experimentation	1
	1.1	Introduction	1
	1.2	Field and glasshouse experiments	ĺ
	1.3	Choice of site	3
	1.4	Soil testing	4
	1.5	Satellite mapping	5
	1.6	Sampling	6
Chapter 2	Basic	Statistical Calculations	9
. •	2.1	Introduction	9
. *	2.2	Measurements and type of variable	9
	2.3	Samples and populations	10
Chapter 3	Basic	e Data Summary	16
45 T	3.1	Introduction	16
	3.2	Frequency distributions (discrete data)	16
	3.3	Frequency distributions (continuous data)	18
	3.4	Descriptive statistics	22
Chapter 4	The I	Normal Distribution, the t-Distribution and	
	Co	nfidence Intervals	24
	4.1	Introduction to the normal distribution	24
	4.2	The standard normal distribution	25
•	4.3	Further use of the normal tables	27
	4.4	Use of the percentage points table (Appendix 2)	29
	4.5	The normal distribution in practice	29
•	4.6	Introduction to confidence intervals	31
•	4.7	Estimation of the population mean, μ	31
-	4.8	The sampling distribution of the mean	32
	4.9	Confidence limits for μ when σ is known	32
*.	4.10	Confidence limits for μ when σ is unknown—	32
		use of the t-distribution	34
	4.11	Determination of sample size	36
	4.12	Estimation of total crop yield	. 36
		* •	. 50

Chapter 5	Introd	luction to Hypothesis Testing	38
-	5.1	The standard normal distribution and the t -distribution	38
	5.2	The single sample <i>t</i> -test	39
	5.3	The P-value	4.
	5.4	Type I and Type II errors	43
	5.5	Choice of level of significance	44
	5.6	The usefulness of a test	4.
	5.7	Estimation versus hypothesis testing	46
	5.8	The paired samples t-test	46
Chapter 6	Comp	arison of Two Independent Sample Means	49
	6.1	Introduction	49
	6.2	The Independent Samples t-test	. 51
	6.3	Confidence intervals	55
	6.4	The theory behind the t-test	55
	6.5	The <i>F</i> -test	58
	6.6	Unequal sample variances	59
	6.7	Determination of sample size for a given precision	60
Chapter 7	Linea	Regression and Correlation	63
	7.1	Basic principles of Simple Linear Regression (SLR)	63
	7.2	Experimental versus observational studies	66
	7.3	The correlation coefficient	67
	7.4	The least squares regression line and its estimation	~ 67
	7.5	Calculation of residuals	71
	7.6	The goodness of fit	72
	7.7	Calculation of the correlation coefficient	74
	7.8	Assumptions, hypothesis tests and confidence intervals	
		for simple linear regression	75
	7.9	Testing the significance of a correlation coefficient	83
Chapter 8	Curve	Fitting	87
•	8.1	Introduction	87
	8.2	Polynomial fitting	87
	8.3	Quadratic regression	` 89
	8.4	Other types of curve	93
	8.5	Multiple linear regression	100
Chapter 9	The C	ompletely Randomised Design	102
	9.1	Introduction	102
	9.2	Design construction	103
•	9.3	Preliminary analysis	105
	9.4	The one-way analysis of variance model	108
	9.5	Analysis of variance	110
÷	9.6	After ANOVA	118
A	9.7	Reporting results	123

		CONTENTS	vii
1.	9.8	The completely randomised design—unequal replication	124
48 ° 1	9.9	Determination of number of replicates per treatment	128
6 1 40	Otron and		
Chapter 10		andomised Block Design	132
et en	10.1	Introduction The section is also as	132
·	10.2	The analysis ignoring blocks	135
	10.3	The analysis including blocks	136
	10.4	Using the computer	136
	10.5 10.6	The effect of blocking The randomised blocks model	137
1111	10.0	· · · · · · · · · · · · · · · · · · ·	138
(7)	10.7	Using a hand calculator to find the sums of squares	141
•	10.8	Comparison of treatment means Reporting the results	142
		Deciding how many blocks to use	144
-		Plot sampling	144
	10.11	Flot sampling	146
Chapter 11	The L	atin Square Design	149
	11.1	Introduction	149
	11.2	Randomisation	151
•	11.3	Interpretation of computer output	153
	11.4	The Latin square model	155
. e*	11.5	Using your calculator	156
Chanter 12	Factor	rial Experiments	150
Chapter 12	12.1	Introduction	1 59 159
***	12.2	Advantages of factorial experiments	160
	12.3	Main effects and interactions	163
	12.4	Varieties as factors	165
•	12.5	Analysis of a randomised blocks factorial experiment	103
1 -		with two factors	166
	12.6	General advice on presentation	176
14	12.7	Experiments with more than two factors	177
	12.8	Confounding	179
	12.9	Fractional replication	180
Chanton 12	Comm	of Tuesday of Marine	
Chapter 13	13.1	arison of Treatment Means	182
	13.1	Introduction Treatments with no structure	182
	13.3		182
	13.4	Treatments with structure (factorial structure)	191
₹	13.4	Treatments with structure (levels of a quantitative factor)	105
1	13.5	Treatments with structure (contrasts)	195
	13.3	Treatments with structure (contrasts)	202
Chapter 14		ing the Assumptions and Transformation of Data	213
";	14.1	The assumptions	213
:	14.2	Transformations	219

viii CONTENTS

Chapter 15	Missin	g Values and Incomplete Blocks	226
	15.1	Introduction	226
	15.2	Missing values in a completely randomised design	226
	15.3	Missing values in a randomised block design	229
	15.4	Other types of experiment	234
	15.5	Incomplete block designs	234
Chapter 16	Split F	Plot Designs	238
•	16.1		238
	16.2	Uses of this design	238
	16.3		240
	16.4	An example with interpretation of computer output	242
	16.5	The growth cabinet problem	250
	16.6	Other types of split plot experiment	252
	16.7	Repeated measures	252
Chapter 17	Compa	arison of Regression Lines and Analysis of Covariance	256
	17.1	Introduction	256
	17.2	Comparison of two regression lines	256
	17.3	Analysis of covariance	260
	17.4	Analysis of covariance applied to a completely	
		randomised design	260
	17.5	Comparing several regression lines	265
	17.6	Conclusion	270
Chapter 18	Analys	sis of Counts	272
	18.1	Introduction	272
	18.2	The binomial distribution	272
	18.3	Confidence intervals for a proportion	275
•	18.4	Hypothesis test of a proportion	277
	18.5	Comparing two proportions	279
	18.6	The chi-square goodness of fit test	280
	18.7	$r \times c$ contingency tables	284
	18.8	$2 \times c$ contingency tables: comparison of several proportions	286
	18.9	2×2 contingency tables: comparison of two proportions	287
	18.10	Association of plant species	289
	18.11	Heterogeneity chi-square	290
Chapter 19	Some	Non-parametric Methods	29 3
	19.1	Introduction	293
	19.2	The Sign test	294
	19.3	The Wilcoxon single-sample test	296
	19.4	The Wilcoxon matched pairs test	297
•	19.5	The Mann-Whitney U test	299
: 1	19.6	The KruskalWallis test	302
* .	19.7	Friedman's test	304

	CONTENT	s ix
Appendix 1:	The normal distribution function	307
Appendix 2:	Percentage points of the normal distribution	308
Appendix 3:	Percentage points of the t-distribution	309
Appendix 4a:	5 per cent points of the F-distribution	310
Appendix 4b:	2.5 per cent points of the F-distribution	312
Appendix 4c:	1 per cent points of the F-distribution	314
Appendix 4d:	0.1 per cent points of the F-distribution	316
Appendix 5:	Percentage points of the sample correlation coefficient (r) when the population correlation coefficient is 0 and n is the number of X , Y pairs	318
Appendix 6:	5 per cent points of the Studentised range, for use in Tukey and SNK tests	319
Appendix 7:	Percentage points of the chi-square distribution	321
Appendix 8:	Probabilities of S or fewer successes in the binomial distribution with n 'trials' and $p = 0.5$	322
Appendix 9:	Critical values of T in the Wilcoxon signed rank or matched pairs test	323
Appendix 10:	Critical values of U in the Mann-Whitney test	324
References	. •	327
Further reading	3	328
Index		320