FOOD PRESERVATION TECHNOLOGY SERIES

Trends in Food Engineering

Jorge E. Lozano Cristina Añón Efrén Parada-Arias Gustavo V. Barbosa-Cánovas

TABLE OF CONTENTS

Series Preface		χv
Preface		xvii
Ac	Acknowledgments	
Co	ntributors	xxi
PA	RT 1: PHYSICAL AND SENSORY PROPERTIES	
1.	Structure-Property Relationships in Foods J.M. Aguilera	
	J.M. Agunera	
	Introduction	1
	Food Structure	3
	Food Engineers and Structure	3 5 6
	Viewing Structures	6
	Probing Structures	6
	The Relevant Scale	7 8
	Distinguishing Properties	8
	Determining Relationships	9
	Structure-Property Relationships in Foods	10
	Lessons from Nature	11
	Conclusions	12
	Acknowledgments	13
	References	13
2.	Physical and Microstructural Properties of Frozen	
	Gelatinized Starch Suspensions	
	N.E. Zaritzky	
	Introduction	15
	Starch Gelatinization	16
	Starch Retrogradation	16
	Glass Transitions	17
	The Role of Starch in Frozen Systems	17
	Gelatinization Enthalpy	18
	Stability of Frozen Starch Pastes	20
	Exudate Production and Texture Modifications	20
	Ice Crystal Formation and Recrystallization	20
	Amylopectin Retrogradation	22
	Textural Changes	22

	Rheological Behavior of Unfrozen and Frozen Starch Pastes	23
	Glass Transition Temperatures of Starch Pastes	26
	Conclusions	27
	References	28
3.	Correlation between Physico-Chemical and Sensory Data	
	G.E. Hough	
	Introduction	31
	Principles of PLS	31
	Definitions	31
	Principles	32
	Example of a PLS Application	33
	Oral Texture	35 35
	Flavor	36
	General Conclusions from the Example	36
	PLS Applications in Sensory Analysis	38
	Final Remarks	38
	References	50
4.	Psychophysical Methods Applied to the Investigation	
	of Sensory Properties in Foods	
	M.C. Zamora	
	Introduction	41
	Sensation Attributes	41
	Measurement of Absolute Sensitivity	42
	Signal Detection Theory	42 43
	Scaling Techniques	43 43
	Category Scaling	43 43
	Structured Scales	43
	Unstructured Scales	44
	Ratio Scaling	44
	Ratio and Partition Scaling	44
	Psychophysical Laws Weber's Law	44
	Fechner's Law	45
	Stevens' Law	45
	Measures of Time	46
	Reaction Time	46
	Time-Intensity Registers	47
	Descriptive Analysis	48
	Taster Variability	48
	Comparative or Absolute Description	49
	Multidimensional Sensory Evaluation	49
	References	50

5.	Sensory and Instrumental Measures of Viscosity	
	E. Costell and L. Durán	-
	Introduction	53
	Selection of Instrumental Viscosity Indices	54
	Newtonian Fluids	54
	Non-Newtonian Fluids	55
	Empirical Correlations	56
	Study Variability	57
	Sensory and Instrumental Viscosity	58
	Measuring Tool Differences	58
	Instrumental and Methodological Differences	59
	Variations in Sensory Analyses of Viscosity	60
	Product Differences	61
	Acknowledgments	62
	References	62
6.	Food Composites	
	P.J. Lillford	
	Introduction	65
	Failure under Mechanical Loading	66
	Elasto-Viscous Fiber Composites	66
	Particulate Composites Exhibiting Brittle Fracture	67
	Liquid Filled Foams	68
	Collapse under Thermal Treatment	70
	Polymer Networks	70
	Fat Crystals	70
	Fat Continuous Emulsions	71
	Ice Networks	73
	Future Trends	73
	Concluding Remarks	74
	Acknowledgments	75
	References	75
7.	Thermal Properties and State Diagrams of Fruits	
	and Vegetables by DSC	
	A.M. Sereno	
	Introduction	77
	Experimentation	77
	Thermograms	78
	Glass Transition, Devitrification, and Melting	78
	Analysis of Results	R 1

	State Diagram	81
	Specific Heat Capacities and Latent Heats	82.
	Unfrozen Water	84
	Storage Stability	84
	Final Remarks	86
	References	87
8.	A Thermorheological Model of Corn Starch Dispersion	
	During Gelatinization	
	W.H. Yang and M.A. Rao	
	Introduction	89
	Materials and Methods	91
	Corn Starch Dispersions	91
	Dynamic Rheological Data	91
	Heating Rates and Dynamic Frequencies	92
	Results and Discussion	92
	Influence of Heating Rate	92
	Functional Viscosity Model	93
	Modified Cox-Merz Rule	94
	Conclusions	96
	Acknowledgments	96
	References	97
9.	Integral and Differential Linear and Nonlinear	
•	Constitutive Models for the Rheology of Wheat Flour Doughs	
	J.L. Kokini, M. Dhanasekharan, C.F. Wang, and H. Huang	
	-	
	Introduction	99
	Linear Viscoelasticity	99
	Nonlinear Viscoelasticity	102
	Integral Viscoelastic Models	102
	Nonlinear Differential Constitutive Models	
		108
	The Giesekus Model	108 109
	The Giesekus Model The White-Metzner Model	
	The Giesekus Model The White-Metzner Model The Phan-Thien-Tanner Model	109
	The Giesekus Model The White-Metzner Model The Phan-Thien-Tanner Model Concluding Remarks	109 109
	The Giesekus Model The White-Metzner Model The Phan-Thien-Tanner Model Concluding Remarks Acknowledgments	109 109 110
	The Giesekus Model The White-Metzner Model The Phan-Thien-Tanner Model Concluding Remarks	109 109 110 114
PA	The Giesekus Model The White-Metzner Model The Phan-Thien-Tanner Model Concluding Remarks Acknowledgments	109 109 110 114 114
	The Giesekus Model The White-Metzner Model The Phan-Thien-Tanner Model Concluding Remarks Acknowledgments References RT 2: ADVANCES IN FOOD PROCESSING Ultrafiltration of Apple Juice	109 109 110 114 114
	The Giesekus Model The White-Metzner Model The Phan-Thien-Tanner Model Concluding Remarks Acknowledgments References RT 2: ADVANCES IN FOOD PROCESSING	109 109 110 114 114

Stationary Permeate Flux	118
Film Theory	120
Surface Renewal Theory	121
Resistance-in-Series Model	123
Permeate Flux as a Function of Time	124
Influence of VCR on the Permeate Flux	126
Permeate Flux and Volume Concentration Ratio	127
Hollow Fiber Ultrafiltration of Apple Juice	128
Micrographic Study Results	129
References	134
11. Simulation of Drying Rates and Quality Changes During the Dehydration of Foodstuffs	
G.H. Crapiste	
Introduction	135
Quality Changes in Foods During Drying	136
Physical and Structural Changes	136
Chemical and Organoleptic Changes	138
Nutritional Changes	140
Mathematical Modeling	140
Simulation Results	144
Conclusions	146
Notation	146
References	147
12. Vacuum Impregnation in Fruit Processing	
P. Fito, A. Chiralt, J.M. Barat, and J. Martinez-Monzó	
Introduction	149
VI Changes in Fruit	150
Composition Changes	150
Physical Property Changes in Fruit	151
Changes in Fruit Tissue Structure	152
Hypertonic Solutions	153
The Way to Equilibrium	155
Short Time Processes	155
Long Time Processes	157
Mass Transfer Mechanisms and Driving Forces	159
The Liquid Retention Capability of a Solid Matrix	159
Practical Criteria for Pseudoequilibrium Situation Definition	161
Notation	162
Acknowledgments	162
References	1 6 3

Introduction	165
Present Equipment Design Objectives	166
Final Quality	1 6 6
Temperature of the Refrigerating Medium	167
Effective Heat Transfer Coefficient	167
Product Size and Shape	167
Other Factors	168
Methods to Reduce the Freezing Rate	169
Design Modifications in Circulation Conditions	169
Application of a Fast Initial Freezing Stage	171
Commonly Used Freezing Equipment	172
Hygienic and Sanitary Topics	172
Specifications for Food Processing Machines	174
Criteria for Hygienic Design	174
Reduction of Fixed and Operation Costs	175
Final Remarks	176
References	176
Evaluation of Freezing and Thawing Processes Using Experimental and Mathematical Determinations A.C. Rubiolo	
Introduction	179
Mathematical Models	181
Experimental Determination	186
Conclusions	189
References	189
Minimal Processing of Fruits and Vegetables R.P. Singh and J.D. Mannapperuma	
Introduction	191
Fruit and Vegetable Quality	191
Control of Environmental Factors	192
Modified Atmosphere Packaging	1 9 3
Mathematical Design	193
Perforated Packages	197
Notation	201
References	201

13. Engineering Trends in Food Freezing R.H. Mascheroni

S.M. Alzamora, M.S. Tapia, A. Leúnda, S.N. Guerrero,	
A.M. Rojas, L.N. Gerschenson, and E. Parada Arias	
Introduction	205
Vacuum Impregnation	208
Textural Aspects	210
Color Aspects	213
Microorganism Penetration and the Hydrodynamic	217
Mechanism	
Use of Natural Antimicrobials	219
References	222
17. A Review of Nonthermal Technologies	
S. Bolado-Rodriguez, M.M. Góngora-Nieto, U. Pothakamury,	
G.V. Barbosa-Cánovas, and B.G. Swanson	
Introduction	227
High Pressure Technology	228
Engineering Aspects	228
Biological Effects	230
In Microorganisms	230
In Enzymes	232
In Biochemical Reactions	233
In Microbial Cells	234
Applications	235
Pulsed Light Treatment	235
Engineering Aspects	236
Effects on Microorganisms	237
Applications	239
Pulsed Electric Fields Technology	240
Engineering Aspects	242
Biological Effects	244
In Microorganisms	244
In Enzymes	247
Applications	249
Oscillating Magnetic Fields	250
Generation	250
Biological Effects	252
In Microorganisms	252
In Enzymes	253
In Tissues and Membranes	254
Applications	255
References	256

16. Minimal Preservation of Fruits: A CYTED Project

18.	Minimally Processed Foods with High Hydrostatic Pressure	
	A. López-Malo, E. Palou, G.V. Barbosa-Cánovas, B.G. Swanson,	
	and J. Welti-Chanes	
	Introduction	26′
	High Moisture Fruit Products	268
	Stability	268
	Microbiological Aspects	269
	Color Changes	270
	New Hurdles	27
	High Hydrostatic Pressure	27
	Effects on Microorganisms	272
	Inactivation Kinetics	274
	Microbial Spores	277
	Enzymatic Reactions	278
	Polyphenoloxidase and Color Changes	280
	Final Remarks	282
	References	283
PA	RT 3: CURRENT TOPICS IN FOOD ENGINEERING	
19.	Biocatalysts for the Food Industry	
	A. Illanes	
	Introduction	287
	Sources of Biocatalysts	288
	Types of Biocatalysts	288
	Current Applications and Future Trends	289
	Market Overview	290
	Conventional Use in the Food Industry	292
	Biocatalytic Processes in the Food Industry	292
	Novel Applications and Recent Developments	293
	Final Remarks	295
	References	296
20.	Enzymatic Synthesis of Food Additives	
	A. van der Padt, F. Boon, N. Heinsman, J. Sewalt, and K. van 't Ri	et
	Introduction	299
	Biocatalysis Using Enzymes	299
	Applying Enzymes	300
	Enzyme Stability	300
	Pros and Cons of Biocatalysis	301
	Enzymatic Synthesis of Food Additives	302
	Two Examples of Running Industrial Processes	302
	• 0	

Aspartame	302
High Fructose Syrups	303
Ongoing Research for the Enzymatic Synthesis of Food	303
Additives	
Flavors and Fragrances	304
Oligosaccharides	305
Oils and Fats	307
Concluding Remarks	308
References	308
21. Plastic Materials for Modifled Atmosphere Packaging	
R. Catalá and R. Gavara	
Introduction	311
Applications	312
Modified Atmosphere Packaging Factors	313
Food Requirements	314
Materials and Containers	315
Packaging Foods with Low/Null Exchange Gases	316
Packaging Foods that Exchange Gases	318
Low Permeable Non-porous Containers	319
High Permeable Non-porous Containers	320
High Permeable Porous Containers	321
Active Packaging	322
References	322
22. Gelation of Soybean Proteins at Acidic pH	
M.C. Puppo and M.C. Añón	
Introduction	327
Protein Conformation at Acidic pH	328
Structural Properties of Gels	329
Hydration and Rheological Properties of Gels	331
Conclusions	337
References	337
Index	341