Manufacturing Process

COMPUTATIONAL INTELLIGENCE

raw signal/111

MANUFACTURING HANDBOOK

feature extraction

control action

classification

pattern rec Edited by

Jun Wang

Andrew Kusiak

state evaluation

Table of Contents

PART I Overview

_				
1	Computational Intelligence for Manufacturing			
	-	Pham · P. T. N. Pham		
	1.1	Introduction	1-1	
	1.2	Knowledge-Based Systems		
	1.3	Fuzzy Logic	1-4	
	1.4	Inductive Learning		
	1.5	Neural Networks		
	1.6	Genetic Algorithms	1-15	
	1.7	Some Applications in Engineering and Manufacture	1 -19	
	1.8	Conclusion	1-25	
2	Neural Network Applications in Intelligent Manufacturing:			
		Updated Survey		
	Jun	Wang · Wai Sum Tang · Catherine Roze		
	2.1	Introduction	2-1	
	2.2	Modeling and Design of Manufacturing Systems		
	2.3	Modeling, Planning, and Scheduling of Manufacturing Processes		
	2.4	Monitoring and Control of Manufacturing Processes		
	2.5	Quality Control, Quality Assurance, and Fault Diagnosis	2 -18	
	2.6	Concluding Remarks	2-23	
3	Hol	onic Metamorphic Architectures for Manufacturing: Identifying		
	Holonic Structures in Multiagent Systems by Fuzzy Modeling			
	Mich	naela Ulieru · Dan Stefanoiu · Douglas Norrie		
	3.1	Introduction	3-1	
	3.2	Agent-Oriented Manufacturing Systems	3-2	
	3.3	The MetaMorph Project	3-3	
	3.4	Holonic Manufacturing Systems		
	3.5	* Holonic Self-Organization of MetaMorph via Dynamic Virtual Clustering	3-1	
	3.6	Automatic Grouping of Agents into Holonic System: Simulation Results		
	3.7	MAS Self-Organization as a Holonic System: Simulation Results		
	3.8	Conclusions		
	J.0	~~A***********************************		

PART II Manufacturing System Modeling and Design

4	Neural Network Applications for Group Technology and Cellular Manufacturing Nallan C. Suresh				
	4.1	Introduction	4-1		
	4.2	Artificial Neural Networks	4-3		
	4.3	A Taxonomy of Neural Network Application for GT/CM			
	4.4	Conclusions			
5	Application of Fuzzy Set Theory in Flexible Manufacturing System Design A. Kazerooni · K. Abhary · L. H. S. Luong · F. T. S. Chan				
	5.1				
	5.2	A Multi Critorian Decision Meling Assured for Publisher of C. 1. 1.11. D. 1.	5-]		
	5.3	A Multi-Criterion Decision-Making Approach for Evaluation of Scheduling Rules	5-2		
	5.3 5.4	Justification of Representing Objectives with Fuzzy Sets	5-4		
		Decision Points and Associated Rules	5-4		
	5.5	A Hierarchical Structure for Evaluation of Scheduling Rules	5-4		
	5.6	A Fuzzy Approach to Operation Selection	5-11		
	5.7	Fuzzy-Based Part Dispatching Rules in FMSs	5-15		
	5.8	Fuzzy Expert System-Based Rules	5-17		
	5.9	Selection of Routing and Part Dispatching Using Membership Functions and Fuzzy Expert System-Based Rules	= 01		
6	Genetic Algorithms in Manufacturing System Design				
	L. H.	S. Luong · M. Kazerooni · K. Abhary			
	6.1	Introduction	6-1		
	6.2	The Design of Cellular Manufacturing Systems			
	6.3	The Concepts of Similarity Coefficients	6-4		
	6.4	A Genetic Algorithm for Finding the Optimum Process Routings for Parts	6-7		
	6.5	A Genetic Algorithm to Cluster Machines into Machine Groups			
	6.6	A Genetic Algorithm to Cluster Parts into Part Families	6-12		
	6.7	Layout Design	6-13		
	6.8	A Genetic Algorithm for Layout Optimization	6-14		
	6.9	A Case Study	6-16		
	6.10	Conclusion	6 -19		
7	Intelligent Design Retrieving Systems Using Neural Networks C. Alec Chang Chieh-Yuan Tsai				
	7.1	Introduction	7 -1		
	7.2	Characteristics of Intelligent Design Retrieval			
	7.3	Structure of an Intelligent System	7 -3		
	7.4	Performing Fuzzy Association	7 -5		
	7.5	Implementation Example	7-5		

PART III Process Planning and Scheduling

_					
8	Soft Computing for Optimal Planning and Sequencing of				
	Para	llel Machining Operations			
		-Shin Lee · Nan-Chieh Chiu · Shu-Cherng Fang			
	8.1	Introduction8-			
	8.2	A Mixed Integer Program8-			
	8.3	A Genetic-Based Algorithm8-			
	8.4	Tabu Search for Sequencing Parallel Machining Operations8-			
	8.5	Two Reported Examples Solved by the Proposed GA			
	8.6	Two Reported Examples Solved by the Proposed Tabu Search8-1			
	8.7	Random Problem Generator and Further Tests8-2			
	8.8	Conclusion8-2			
9	Арр	lication of Genetic Algorithms and Simulated Annealing			
		rocess Planning Optimization			
	Y. F.	Zhang · A. Y. C. Nee			
	9.1	Introduction9-			
	9.2	Modeling Process Planning Problems in an Optimization Perspective9-			
	9.3	Applying a Genetic Algorithm to the Process Planning Problem9-1			
	9.4	Applying Simulated Annealing to the Process Planning Problem9-1			
	9.5	Comparison between the GA and the SA Algorithm9-2			
	9.6	Conclusions9-2			
10	Production Planning and Scheduling Using Genetic Algorithms				
		wei Cheng · Mitsuo Gen			
	10.1	Introduction10-			
		Resource-Constrained Project Scheduling Problem10-			
	10.3	Parallel Machine Scheduling Problem10-			
	10.4	Job-Shop Scheduling Problem10-1			
	10.5	10.0			
	10.6	Part Loading Scheduling Problem10-2			
PA	RT :	IV Manufacturing Process Monitoring and Control			
-,					
11	Neural Network Predictive Process Models:				
	Thr	ee Diverse Manufacturing Applications			
	Sara	h S. Y. Lam · Alice E. Smith			
	11.1	Introduction to Neural Network Predictive Process Models11			
	11.2	Ceramic Slip Casting Application11			
	11.3	Abrasive Flow Machining Application11			
	11.4	Chemical Oxidation Application11			

11.5 Concluding Remarks......11-11

12	Neural Network Applications to Manufacturing Processes:				
	Monitoring and Control Hyung Suck Cho				
	12.2 Manufacturing Process Monitoring and Cont	trol12-2			
	12.3 Neural Network-Based Monitoring				
	12.4 Quality Monitoring Applications				
	12.5 Neural Network-Based Control	12-19			
	12.6 Process Control Applications	12-22			
	12.7 Conclusions	12-31			
13	3 Commutational Intelligence 1 Act				
13	Gary S. May				
	13.1 Introduction	13-1			
	13.2 The Role of Computational Intelligence				
	13.3 Process Modeling	13 -11			
	13.4 Optimization	13-19			
	13.5 Process Monitoring and Control	13-32			
	13.6 Process Diagnosis	13-41			
	13.7 Summary	13-52			
	•				
14	Monitoring and Diagnosing Manufactur	Monitoring and Diagnosing Manufacturing Processes			
	Using Fuzzy Set Theory	ing i locesses			
	R. Du · Yangsheng Xu				
	14.1 Introduction	14.1			
	14.2 A Brief Description of Fuzzy Set Theory	14.2			
	14.3 Monitoring and Diagnosing Manufacturing P	Processes Using Fuzzy Sate 14.9			
	14.4 Application Examples	14.22			
	14.5 Conclusions	14.77			
15	Fuzzy Neural Network and Wavelet for Tool Condition Monitoring Xiaoli Li				
	15.1 Introduction				
		15-2			
	15.3 Wavelet Transforms	15-7			
	15.4 Tool Breakage Monitoring with Wavelet Tran	sforms15-10			
	15 5 11 4'C 4' CM 1347 A				
	15.5 Identification of Tool Wear States Using Fuzz	y Method15-12			

PART V Quality Assurance and Fault Diagnosis

16	Surfa	al Networks and Neural-Fuzzy Approaches in an In-Process ace Roughness Recognition System for End Milling Operations C. Chen	
		Introduction	16-1
		Methodologies	
		Experimental Setup and Design	
		The In-Process Surface Roughness Recognition Systems	
	16.5	Testing Results and Conclusions	16-14
17		ligent Quality Controllers for On-Line Parameter Design Babu Chinnam	
	17.1	Introduction	17- 1
	17.2	An Overview of Certain Emerging Technologies Relevant to On-Line	
		Parameter Design	17-6
	17.3	Design of Quality Controllers for On-Line Parameter Design	17-9
		Case Study: Plasma Etching Process Modeling and On-Line Parameter Design	
		Conclusion	
18	Shing 18.1 18.2 18.3 18.4	Properties of the Proposed Hybrid Neural Fuzzy Control Charts	18-318-418-1618-18
19	Mult Li-Ph	iss*: A Prototype Rough-Set and Genetic Algorithms Enhanced in-Concept Classification System for Manufacturing Diagnosis eng Khoo · Lian-Yin Zhai	10.1
		Introduction	
	19.2	Basic Notions	19-2
	19.3	A Prototype Multi-Concept Classification System	1 7- /
		Validation of RClass*	
	19.5	Application of RClass* to Manufacturing Diagnosis	19-12 19-16.
	13.0	COLICUSIONS	
Ind	ΔV		I-1