

STESSA 2000

Federico M. Mazzolani

Robert Tremblay

Editors

Table of contents

Preface	XIII
Organization	χV
Material and member behaviour	
New trends in the evaluation of available ductility of steel members A. Anastasiadis, V. Gioncu & F. M. Mazzolani	3
ASTM A913 grades 50 and 65: Steels for seismic applications S. Bouchard & G. Axmann	11
Influence of strain-rate on the behaviour of steel members V.Gioncu	19
Modeling of cracking and local buckling in steel frames by using plastic hinges with damage P. Inglessis, S. Medina, A. López & J. Flórez-López	27
Buckling-restrained braces as hysteretic dampers M. Iwata, T. Kato & A. Wada	33
Seismic performance of brace fuse elements for concentrically steel braced frames M. Rezai, H.G.L. Prion, R. Tremblay, N. Bouatay & P. Timler	39
Cyclic elasto-plastic analysis of steel members I.H.P.Mamaghani	47
Member response to strong pulse seismic loading G. Mateescu & V. Gioncu	55
Calibration of thin-walled members ductility A. Moldovan, D. Petcu & V. Gioncu	63
Fatigue damage modelling of steel structures R. Perera, S. Gómez & E. Alarcón	73
Performance of high strength CFT columns under seismic loading A.H.Varma, J.M. Ricles, R. Sause & L.W.Lu	79

Connections

Monotonic and cyclic analysis of bolted T-stubs S.Ádány & L. Dunai	89
Experimental studies on cyclic behaviour modes of base-plate connections S.Ádány, L.Calado & L.Dunai	97
Cyclic behaviour of the shear connection component in composite joints J.M.Aribert & A. Lachal	105
The behaviour of compression welds and carrying capacity with earthquake effects K. Badamchi	113
Monotonic and cyclic behaviour of composite beam-column connections J.G. Beutel, D. P.Thambiratnam & N. Perera	119
Effect of column straightening protocol on connection performance R. Bjorhovde, L. J. Goland & D. J. Benac	125
Cyclic testing of flush end-plate semi-rigid steel connections B. M. Broderick & A.W. Thomson	135
Welded plate and T-stub tests and impact on structural behavior of moment frame connections F.W.Brust, P.Dong & T.Kilinski	141
Cyclic behaviour of steel beam-to-column joints with a concrete slab C.A. Castiglioni, C. Bernuzzi & L. Calado	147
Characterization of components in steel and composite connections under cyclic loading P.J.S. Cruz, L. Calado & L. Simões da Silva	155
Cyclic behavior of semi-rigid angle connections: A comparative study of tests and modeling G.De Matteis, R.Landolfo & L.Calado	165
Influence of loading asymmetry on the cyclic behaviour of beam-to-column joints D. Dubina, A. L. Ciutina & A. Stratan	175
Cyclic behaviour of bolted T-stubs: Experimental analysis and modelling C.Faella, V.Piluso & G.Rizzano	183
Hysteretic behavior of steel moment resisting column bases M. Fahmy, B. Stojadinovic & S. C. Goel	191
Experiment and analysis of bolted semi-rigid beam-column connections Part I: Cyclic loading experiment K. Kasai, Y. Xu & A. Mayangarum	199
Experiment and analysis of bolted semi-rigid beam-column connections Part II: 3-D finite element analysis of the connections using angles Y.Xu, K. Kasai & C. Mao	207
Fracture of beam-to-column connection simulated by means of the shaking table test using the inertial loading equipment Y. Matsumoto, S. Yamada & H. Akiyama	215

Quality assurance for welding of Japanese welded beam-to-column connections M. Nakashima	223
Experimental studies on post-tensioned seismic resistant connections for steel frames J.M.Ricles, R.Sause, M.M.Garlock, S.W.Peng & L.W.Lu	231
Inelastic seismic response of frame fasteners for steel roof decks C.A. Rogers & R. Tremblay	239
Tests on the strain rate effects on beam-to-column steel connection L. Sanchez & A. Plumier	247
Dynamic behavior of composite structures with composite connections L. Simões da Silva, P.J. S. Cruz & L. Calado	255
Improvement of seismic behaviour of beam-to-column joints using tapered flanges P. Sotirov, N. Rangelov & J. Milev	265
Comparison of seismic capacity between post-Northridge and post-Kobe beam-to-column connections K. Suita, M. Nakashima & M. D. Engelhardt	271
Seismic responses of steel reduced beam section to weak panel zone moment joints K.C.Tsai & W.Z.Chen	279
Experimental method of the full scale shaking table test using the inertial loading equipment S.Yamada, Y.Matsumoto & H.Akiyama	287
Codification, design and application	
Parametric analysis of the dynamic behaviour of ENEL towers in Naples by means of 'minimum' model P. Belli & F. Guarracino	295
Serviceability and stress control in seismic design of steel structures B. Calderoni & A. De Martino	303
Romanian new Code for the design of steel structures subjected to seismic loads C.Dalban, P.Ioan, S.Dima & St. Spanu	311
Lions' Gate Bridge North Approach — Seismic retrofit D.J. Dowdell & B.A. Hamersley	319
Seismic design and response of a 14-story concentrically braced steel building L. Martinelli, F. Perotti & A. Bozzi	327
Seismic behavior of steel lattice telecommunication towers G.McClure, M. Lapointe & M.A. Khedr	335
Seismic upgrading of existing steel frames by a bracing system installed with fully mechanical interfaces K.Ohi	339

Investigation and analysis of damage to expressway tollgate structures caused by the Hyogoken-Nanbu earthquake K. Suita, K. Onikawa, Y. Mitani, S. Yamada & M. Arashiyama	345
Inelastic behaviour of a 52-storey steel frame building C.E.Ventura & Y.Ding	353
Base isolation and energy dissipation	
A new ADAS system for seismic retrofitting of framed structures by means of the new hysteretical 'I' shaped device L.Anania, A.Badalà & S.Costa	363
Active base isolation of m.d.o.f. structures by a time-convolution algorithm A. Baratta & O. Corbi	371
Effectiveness of viscous damped bracing systems for steel frames A. Chiarugi, S. Sorace & G. Terenzi	379
Non-invasive passive energy dissipation systems for the seismic design and retrofit of steel structures C. Christopoulos & A. Filiatrault	387
Earthquake protection of buildings and bridges with viscous energy dissipation devices D.Di Marzo, A. Mandara & G. Serino	395
Seismic performance of moment resistant steel frame with hysteretic damper Y.H.Huang, A.Wada, H.Sugihara, M.Narikawa, T.Takeuchi & M.Iwata	403
Seismic redesign of steel frames by local insertion of dissipating devices M.G. Mulas, M.Arcelaschi & J. E. Martinez-Rueda	411
Seismic dampers utilization and design for steel structures W. Pong	419
Earthquake resistant performance of moment resistant steel frames with damper M.Yamaguchi, S.Yamada, A.Wada, M.Ogihara, M.Narikawa, T.Takeuchi & Y.Maeda	425
Global behaviour	
Effects of repeated seismic events on structures C.Amadio, M. Fragiacomo, S. Rajgelj & F. Scarabelli	435
Toward a consistent methodology for ductility checking A. Anastasiadis, V. Gioncu & F. M. Mazzolani	443
Numerical investigation of the q-factor for steel frames with semi-rigid and partial-strength joints J.M.Aribert & D.Grecea	455
Composite frames under dynamic loadings: Numerical and experimental analysis	463

Analytical study of buildings constructed with riveted semi-rigid connections K.C.Chessman & M.Bruneau	471
Seismic response of steel columns under multi component seismic motion M.Como, R.Ramasco & M.De Stefano	479
Establishing seismic force reduction factors for steel structures R.G.Driver, D.J.L. Kennedy & G.L. Kulak	487
Seismic response of tied and trussed eccentrically braced frames A.Ghersi, F.Neri, P.P.Rossi & A.Perretti	495
Large scale tests of steel frames with semi-rigid connections under quasi-static cyclic loading M.Iványi & G.Varga	503
Influence of P- Δ effect on a proposed procedure for seismic design of steel frames <i>F.Neri</i>	511
Steel building response under biaxial seismic excitations R.Ramasco, G.Magliulo & G.Faella	519
Influence of brace slenderness on the seismic response of concentrically braced steel frames R.Tremblay	527
Inelastic seismic analysis of eccentrically loaded steel bridge piers T.Usami & Q.Y.Liu	535
Steel panel shear wall – Analysis on the center core steel panel shear wall system M.Yamada & T.Yamakaji	541
Performance based design and moment resisting frames	
Earthquake resistance of frames with unsymmetric bolted connections D. Beg, P. Skuber & C. Remec	551
Inelastic dynamic and static analyses for steel MRF seismic design B. Calderoni & Z. Rinaldi	559
Seismic performance of dual steel moment-resisting frames D. Dubina, A. Stratan, G. De Matteis & R. Landolfo	569
Comparative study on seismic design procedures for steel MR frames according to the force-based approach B. Faggiano, G. De Matteis & R. Landolfo	577
Optimum bending and shear stiffness distribution for performance based design of rigid and braced multi-story steel frames C.J.Gantes, I.Vayas, A.Spiliopoulos & C.C.Pouangare	585
Seismic behavior of post-tensioned steel frames M.M.Garlock, J.M.Ricles, R.Sause, C.Zhao & L.W.Lu	593
The effect of connection hysteretic behaviour on seismic damage to moment resisting steel frames R. Landolfo, G. Della Corte & G. De Matteis	601

Performance based design of seismic-resistant MR-frames F.M. Mazzolani, R. Montuori & V. Piluso	61
Energy based methods for evaluation of behaviour factor for moment resisting frames J. Milev, P. Sotirov & N. Rangelov	619
Plastic design of steel frames with dog-bone beam-to-column joints R. Montuori & V. Piluso	627
Behaviour of MRPs subjected to near-field earthquakes L.D.Tirca	635
Evaluation of the response of moment frames in respect to various performance criteria A.I.Vayas & B.F.Dinu	643
Low-cycle fatigue behaviour of moment resisting frames I. Vayas & A. Spiliopoulos	649
SAC steel project	
SAC program to assure ductile connection performance CW.Roeder	659
Development of the free flange steel moment connection J.Choi, B. Stojadinović & S. C. Goel	667
Fracture mechanics analysis of moment frame joint incorporating welding effects <i>P.Dong, J.Zhang & F.W.Brust</i>	675
Reduced beam section welded steel moment frame connections G.T.Fry, S.L.Jones & M.D.Engelhardt	681
Relating ground motion spectral information to structural deformation demands A.Gupta & H.Krawinkler	687
Reinforced steel moment-resisting joints T.Kim, A.S.Whittaker & V.V.Bertero	695
Cyclic modeling of T-stub bolted connections R.T.Leon & J.A.Swanson	703
Inelastic finite element studies of unreinforced welded beam-to-column moment connections C.Mao, J.M.Ricles, L.W.Lu & J.W.Fisher	711
Seismic testing of welded beam-to-column moment connections C. Mao, J. M. Ricles, L.W. Lu & J.W. Fisher	719
Seismic design of sixteen-bolt extended stiffened moment end-plate connections T.W.Mays, E.A.Sumner, R.H.Plaut & T.M.Murray	727
'Heavy' moment end-plate connections subjected to seismic loading E.A. Sumner, T.W. Mays & T.M. Murray	735
Seismic response of 3-D steel structure with Bi-directional columns H.Tagawa & G.A.MacRae	741

Cyclic instability of steel moment connections with reduced beam sections CM.Uang & CC.Fan	747
Effects of lateral bracing and system restraint on the behavior of RBS moment connections Q.S.Yu & C-M.Uang	755
Author index	763