Scattering of Electromagnetic Waves

Theories and Applications

Leung Tsang
Jin Au Kong
Kung-Hau Ding

CONTENTS

PREF.	ACE	хi
INTR	TER 1 ODUCTION TO ELECTROMAGNETIC SCATTERING SINGLE PARTICLE	; 1
1	Basic Scattering Parameters	2
1.1	Scattering Amplitudes and Cross Sections	2
1.1	Scattering Amplitude Matrix	6
2	Rayleigh Scattering	9
2.1	Rayleigh Scattering by a Small Particle	9
2.2	Rayleigh Scattering by a Sphere	10
2.3	Rayleigh Scattering by an Ellipsoid	12
2.4	Scattering Dyads	14
3	Integral Representations of Scattering and	16
3.1	Integral Expression for Scattering Amplitude	16
3.2	Born Approximation	18
4	Plane Waves, Cylindrical Waves, and Spherical Waves	21
4.1	Cartesian Coordinates: Plane Waves	21
4.2	Cylindrical Waves	22
4.3	Spherical Waves	24
5	Acoustic Scattering	30
6	Scattering by Spheres, Cylinders, and Disks	32
6.1	Mie Scattering	32
6.2	Scattering by a Finite Length Cylinder Using the Infinite Cylinder Approximation	41
6.3	Scattering by a Disk Based on the Infinite Disk Approximation	46
	References and Additional Readings	52

 	FER 2 THEORY OF ELECTROMAGNETIC SCATTERING	53
1	Dyadic Green's Function	54
1.1	Green's Functions	54
1.2	Plane Wave Representation	55
1.3	Cylindrical Waves	57
1.4	Spherical Waves	59
2	Huygens' Principle and Extinction Theorem	60
3	Active Remote Sensing and Bistatic Scattering Coefficients	66
4	Optical Theorem	68
5	Reciprocity and Symmetry	73
5.1	Reciprocity	73
5.2	Reciprocal Relations for Bistatic Scattering Coefficients and Scattering Amplitudes	7 5
5.3	Symmetry Relations for Dyadic Green's Function	79
6	Eulerian Angles of Rotation	81
7	T-Matrix	83
7.1	T-Matrix and Relation to Scattering Amplitudes	83
7.2	Unitarity and Symmetry	88
8	Extended Boundary Condition	91
8.1	Extended Boundary Condition Technique	91
8.2	Spheres	97
	8.2.1 Scattering and Absorption for Arbitrary Excitation	100
	8.2.2 Mie Scattering of Coated Sphere	102
8.3	Spheroids	104
	References and Additional Readings	106

	PTER 3 DAMENTALS OF RANDOM SCATTERING	107
1	Radar Equation for Conglomeration of Scatterers	108
2	Stokes Parameters and Phase Matrices	116
2.1	Elliptical Polarization, Stokes Parameters, Partial Polarization	116
2.2	Stokes Matrix	123
2.3	Scattering per Unit Volume and Phase Matrix	124
2.4	Rayleigh Phase Matrix	127
2.5	Phase Matrix of Random Media	129
3	Fluctuating Fields	131
3.1	Coherent and Incoherent Fields	131
3.2	Probability Distribution of Scattered Fields and Polarimetric Description	132
4	Specific Intensity	140
5	Passive Remote Sensing	145
5.1	Planck's Radiation Law and Brightness Temperature	145
5.2	Kirchhoff's Law	149
5.3	Fluctuation Dissipation Theorem	152
5.4	Emissivity of Four Stokes Parameters	155
6	Correlation Function of Fields	161
	References and Additional Readings	165
CHAI	PTER 4 RACTERISTICS OF DISCRETE SCATTERERS AND SH SURFACES	. 167
1	Ice	168
2	Snow	170
3	Vegetation	171
4	Atmosphere	172

5	Correlation Function and Pair Distribution Function	173
5.1	Correlation Function	174
5.2	Pair Distribution Function	176
6	Gaussian Rough Surface and Spectral Density	179
7	Soil and Rocky Surfaces	184
8	Ocean Surface	185
	References and Additional Readings	195
	TER 5 FERING AND EMISSION BY LAYERED MEDIA .	199
1	Incoherent Approach of Radiative Transfer	200
2	Wave Approach	203
2.1	Reflection and Transmission	203
2.2	Dyadic Green's Function for Stratified Medium	207
2.3	Brightness Temperatures for a Stratified Medium with Temperature Distribution	212
3	Comparison Between Incoherent Approach and Coherent Approach	217
4	Applications to Passive Remote Sensing of Soil	220
	References and Additional Readings	229
	TER 6 LE SCATTERING AND APPLICATIONS	231
1	Single Scattering and Particle Position Correlation	232
2	Applications of Single Scattering	237
2.1	Synthetic Aperture Radar	237
2.2	Interferometric SAR	248
2.3	Active Remote Sensing of Half-Space Random Media	252
	References and Additional Readings	258

CHAP'	TER 7 ATIVE TRANSFER THEORY	259
1	Scalar Radiative Transfer Theory	260
2	Vector Radiative Transfer Theory	269
2.1	Phase Matrix of Independent Scattering	269
2.2	Extinction Matrix	272
2.3	Emission Vector	275
2.4	Boundary Conditions	283
	References and Additional Readings	286
	TER 8 FION TECHNIQUES OF RADIATIVE SFER THEORY	287
1	Iterative Method	288
1.1	Iterative Procedure	288
1.2	Integral Equation for Scattering Problems	293
1.3	Active Remote Sensing of a Half-Space of Spherical Particles	298
1.4	Active Remote Sensing of a Layer of Nonspherical Particles	303
	1.4.1 Numerical Illustrations with Finite Dielectric Cylinders	310
1.5	Second-Order Scattering from Isotropic Point Scatterers	322
2	Discrete Ordinate-Eigenanalysis Method	324
2.1	Radiative Transfer Solution for Laminar Structures	324
2.2	Numerical Procedure of Discrete Ordinate Method: Normal Incidence	328
2.3	Active Remote Sensing: Oblique Incidence	337
2.4	Discrete Ordinate Method for Passive Remote Sensing	343
2.5	Passive Remote Sensing of a Three-Dimensional Random Medium	349
2.6	Passive Remote Sensing of a Layer of Mie Scatterers Overlying a Dielectric Half-Space	352

3	Invariant Imbedding	362
3.1	One-Dimensional Problem	363
3.2	Passive Remote Sensing of a Three-Dimensional Scattering Medium with Inhomogeneous Profiles	370
3.3	Passive Remote Sensing of a Three-Dimensional Random Medium	373
3.4	Thermal Emission of Layers of Spherical Scatterers in the Presence of Inhomogeneous Absorption and Temperature Profiles	0.74
4		374
4	Diffusion Approximation	380
	References and Additional Readings	386
	TER 9 DIMENSIONAL RANDOM ROUGH SURFACE FERING	. 389
1	Introduction	390
2	Statistics of Random Rough Surface	392
2.1	Statistics, Correlation Function and Spectral Density	392
2.2	Characteristic Functions	396
3	Small Perturbation Method	397
3.1	Dirichlet Problem for One-Dimensional Surface	397
3.2	Neumann Problem for One-Dimensional Surface	403
4	Kirchhoff Approach	407
4.1	Dirichlet Problem for One-Dimensional Surface	408
4.2	Neumann Problem for One-Dimensional Surface	415
	References and Additional Readings	417
INDEX	C	. 419