

THIRD EDITION

Lehninger Principles of

Biochemistry

David L. Nelson Michael M. Cox

Contents in Brief

Glossary G-1 Illustration Credits IC-1 Index I-1

	Preface iii	
I	Foundations of Biochemistry 1	
1	The Molecular Logic of Life 3	
2	Cells 20	
3	Biomolecules 53	
4	Water 82	
11	Structure and Catalysis 113	
5	Amino Acids, Peptides, and Proteirs 115	
6	The Three-Dimensional Structure of Proteins 159	
7	Protein Function 203	
8	Enzymes 243	
9 10	Carbohydrates and Glycobiology 293	
11	Nucleotides and Nucleic Acids 325 Lipids 363	
12	Biological Membranes and Transport 389	
13	Biosignaling 437	
TTT	• •	
III 14	Bioenergetics and Metabolism 485	
15	Principles of Bioenergetics 490 Glycolysis and the Catabolism of Hexoses 527	
16	The Citric Acid Cycle 567	
17	Oxidation of Fatty Acids 598	
18	Amino Acid Oxidation and the Production of Urea 623	
19	Oxidative Phosphorylation and Photophosphorylation 659	
20	Carbohydrate Biosynthesis 722	
21	Lipid Biosynthesis 770	
22	Biosynthesis of Amino Acids, Nucleotides, and Related Molecules 818	
23	Integration and Hormonal Regulation of Mammalian Metabolism 869	
ĮV	Information Pathways 905	
24	Genes and Chromosomes 907	
25	DNA Metabolism 931	
26	RNA Metabolism 979	
27	Protein Metabolism 1020	
28	Regulation of Gene Expression 1072	
29	Recombinant DNA Technology 1119	
	Appendix A Common Abbreviations in the Biochemical Research Literature Appendix B Abbreviated Solutions to Problems AP-4	AP-1

Contents

	Preface iii
I	Foundations of Biochemistry 1
1	The Molecular Logic of Life 3 The Chemical Unity of Diverse Living Organisms 3 Biochemistry Explains Diverse Forms of Life in Unifying Chemical Terms 4 All Macromolecules Are Constructed from a Few Simple Compounds 5
	Energy Production and Consumption in Metabolism 6 Organisms Are Never at Equilibrium with Their Surroundings 6 Molecular Composition Reflects a Dynamic Steady State 6 Organisms Transform Energy and Matter from Their Surroundings 7 The Flow of Electrons Provides Energy for Organisms 8 Energy Coupling Links Reactions in Biology 9 Enzymes Promote Sequences of Chemical Reactions 11 Metabolism Is Regulated to Achieve Balance and Economy 12
	Biological Information Transfer 13 Genetic Continuity Is Vested in DNA Molecules 13 The Structure of DNA Allows for Its Repair and Replication with Near-Perfect Fidelity 14 Changes in the Hereditary Instructions Allow Evolution 14 Molecular Anatomy Reveals Evolutionary Relationships 15 The Linear Sequence in DNA Encodes Proteins with Three-Dimensional Structures 16 Noncovalent Interactions Stabilize Three-Dimensional Structures 17
	The Physical Roots of the Biochemical World 18 Further Reading 19
2	Cells 20
	Cellular Dimensions 21
	Cells and Tissues Used in Biochemical Studies 22
	Evolution and Structure of Prokaryotic Cells 24 Escherichia coli Is the Best-Studied Prokaryotic Cell 26
	Evolution of Eukaryotic Cells 27

Eukaryotic Celis Evolved from Prokaryotes in Several Stages - 28

Early Eukaryotic Cells Gave Rise to Diverse Protists 29

Major Structural Features of Eukaryotic Cells 29

The Plasma Membrane Contains Transporters and Receptors 30 Endocytosis and Exocytosis Carry Traffic across the Plasma Membrane 31

The Endoplasmic Reticulum Organizes the Synthesis of Proteins and Lipids 32

The Golgi Complex Processes and Sorts Proteins 33
Lyosomes Are the Sites of Degradative Reactions 33
Vacuoles of Plant Cells Play Several Important Roles 34
Peroxisomes Destroy Hydrogen Peroxide, and Glyoxysomes Convert

Fats to Carbohydrates 34
The Nucleus Contains the Genome 35

Mitochondria Are the Power Plants of Aerobic Eukaryotic Cells 36

Chloroplasts Convert Solar Energy into Chemical Energy 37 Mitochondria and Chloroplasts Probably Evolved from Endosymbiotic Bacteria 38

The Cytoskeleton Stabilizes Cell Shape, Organizes the Cytoplasm, and Produces Motion 39

The Cytoplasm Is Crowded, Highly Ordered, and Dynamic 42

Study of Cellular Components 42

Organelles Can Be Isolated by Centrifugation 42
In Vitro Studies May Overlook Important Interactions among
Molecules 42

Evolution of Multicellular Organisms and Cellular Differentiation 44

Viruses: Parasites of Cells 46

Summary 48 Further Reading 49 Problems 50

3 Biomolecules 53

Chemical Composition and Bonding 53

Biomolecules Are Compounds of Carbon 54
Functional Groups Determine Chemical Properties 56

Three-Dimensional Structure: Configuration and Conformation 57

The Configuration of a Molecule Can Only Be Changed by Breaking a Bond 58

Molecular Conformation Can Be Changed by Rotation About Single Boncs 60

■ Box 3-1 Louis Pasteur and Optical Activity: In Vino, Veritas 61 Configuration and Conformation Define Biomolecular Structures 62

Interactions between Biomolecules Are Stereospecific 63

Chemical Reactivity 64

Bond Strength Is Related to the Properties of the Bonded Atoms 64

Five General Types of Chemical Transformations Occur in Cells 65

All Oxidation-Reduction Reactions Involve Electron Transfer 65
Carbon-Carbon Bonds Are Cleaved and Formed by Nucleophilic
Substitution Reactions 66

Electron Transfers within a Molecule Produce Internal Rearrangements 67

Group Transfer Reactions Activate Metabotic Intermediates 68 Biopolymers Are Formed by Condensations 69

Macromolecules and Their Monomeric Subunits 69

Macromolecules Are the Major Constituents of Cells 69
Macromolecules Are Composed of Monomeric Sucunits 70
Monomeric Subunits Have Simple Structures 70
Subunit Condensation Creates Order and Requires Energy 72
Cells Have a Structural Hierarchy 72

Prebiotic Evolution 74

Biomo ecules First Arose by Chemical Evolution 74

Chemical Evolution Can Be Simulated in the Laboratory 74

RNA or Related Precursors May Have Been the First Genes and Catalysts 75

Biological Evolution Began More Than Three and a Half Billion. Years Ago 76

Summary 78 Further Reading 78 Problems 80

4 Water 82

Weak Interactions in Aqueous Systems 82

Hydrogen Bonding Gives Water Its Unusual Properties 82
Water Forms Hydrogen Bonds with Polar Solutes 85
Water Interacts Electrostatically with Charged Solutes 86

Entropy Increases as Crystalline Substances Dissolve 87

Nonpolar Gases Are Poorly Soluble in Water 88

Nonpolar Compounds Force Energetically Unfavorable Changes in the Structure of Water 88

Van der Waals Interactions Are Weak Interatomic Attractions 90
Weak Interactions Are Crucial to Macromolecular Structure and
Function 90

Solutes Affect the Colligative Properties of Aqueous Solutions 92

■ Box 4-1 Touch Response in Plants: An Osmotic Event 94

Ionization of Water, Weak Acids, and Weak Bases 95

Pure Water Is Slightly Ionized 95

The lonization of Water is Expressed by an Equilibrium Constant 96

■ Box 4-2 The Ion Product of Water: Two Illustrative Problems 97

The pH Scale Designates the H⁺ and OH⁻ Concentrations 97 Weak Acids and Bases Have Characteristic Dissociation Constants 98

Titration Curves Reveal the pK_a of Weak Acids 99

Buffering against pH Changes in Biological Systems 101

Buffers Are Mixtures of Weak Acids and Their Conjugate Bases 102

A Simple Expression Relates pH, pK, and Buffer Concentration 102

■ Box 4-3 Solving Problems Using the Henderson-Hasselbalch Equation 103

Weak Ac ds or Bases Buffer Cells and Tissues against pH Changes 1C4

■ Box 4-4 Blood, Lungs, and Buffer: The Bicarbonate Buffer System 105

Water as a Reactant 106

The Fitness of the Aqueous Environment for Living Organisms 107

Summary 107 Further Reading 108 Problems 109

II Structure and Catalysis 113

5 Amino Acids, Peptides, and Proteins 115

Amino Acids 116

Amino Acids Share Common Structural Features 116
The Amino Acid Residues in Proteins Are L Stereoisomers 117
Amino Acids Can Be Classified by R Group 118

■ Box 5-1 Absorption of Light by Molecules: The Lambert-Beer Law 121

Nonstandard Amino Acids Also Have Important Functions 121
Amino Acids Can Act as Ac.ds and Bases 123
Amino Acids Have Characteristic Titration Curves 123
Titration Curves Predict the Electric Charge of Amino Acids 125

Amino Acids Differ in Their Acid-Base Properties 125

Peptides and Proteins 126

Contents XİX

Biologically Active Peptides and Polypeptides Occur in a Vast Range of Sizes 127			
Polypeptides Have Characteristic Amino Acid Compositions 128			
Some Proteins Contain Chemical Groups Other Than Amino Acids 129			
There Are Severa: Levels of Protein Structure 129			
Working with Proteins 130			
Proteins Can Be Separated and Purified 130			
Proteins Can Be Separated and Characterized by Electrophores s 134			
Unseparated Proteins Can Be Quantified 136			
The Covalent Structure of Proteins 137			
The Function of a Protein Depends on Its Amino Acid Sequence 138			
•			
The Amino Acid Sequences of Numerous Proteins Have Been Determined 138			
■ Box 5–2 Protein Homology among Species 139			
Short Polypeptides Are Sequenced Using Automated Procedures 141			
Large Proteins Must Be Sequenced in Smaller Segments 142			
Amino Acid Sequences Can Also Be Deduced by Other Methods 145			
■ Box 5–3 Investigating Proteins with Mass Spectrometry 146			
Amino Acid Sequences Provide Important Biochemical Information 150			
Small Peptides and Proteins Can Be Chemically Synthesized 150			
Summary 152 Further Reading 153 Problems 154			
The Three-Dimensional Structure of Proteins 159			
Overview of Protein Structure 159			
A Protein's Conformation Is Stabilized Largely by Weak Interactions 160			
The Peptide Bond Is Rigid and Planar 161			

Peptides Are Chains of Amino Acids 126

Peptides Can Be Distinguished by Their Ionization Behavior 127

6

Protein Secondary Structure 163

The α Helix is a Common Protein Secondary Structure 163

■ Box 6-1 Knowing the Right Hand from the Left 165

Amino Acid Sequence Affects & Helix Stability 165

The & Conformation Organizes Polypeptide Chains into Sheets 166

 β Turns Are Common in Proteins 168

Common Secondary Structures Have Characteristic Bond Angles and Amino Acid Content 169

Protein Tertiary and Quaternary Structures 170

Fibrous Proteins Are Adapted for a Structural Function 170

■ Box 6-2 Permanent Waving Is Biochemical Engineering 172

Structura! Diversity Reflects Functional Diversity in Globular Prote ns 175

Myoglobin Provided Early Clues about the Complexity of Globular Protein Structure 175

■ Box 6–3 Methods for Determining the Three-Dimensional Structure of a Protein 178

Globular Proteins Have a Variety of Tertiary Structures 182

Analysis of Many Globular Proteins Reveals Common Structural Patterns 183

Protein Motifs Are the Basis for Protein Structural Classification 185

Protein Quaternary Structures Range from Simple Dimers to Large Complexes 188

There Are Limits to the Size of Proteins 191

Protein Denaturation and Folding 191

Loss of Protein Structure Results in Loss of Function 192 Amino Acid Sequence Determines Tertiary Structure 192 Polypeptides Fold Rapidly by a Stepwise Process 193

■ Box 6-4 Death by Misfolding: The Prion Diseases 196 Some Proteins Undergo Assisted Folding 196

Summary 199 Further Reading 200 Problems 200

Protein Function 203

Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins 204

Oxygen Can Be Bound to a Heme Prosthetic Group 204 Myoglobin Has a Single Binding Site for Oxygen 206 Protein-Ligand Interactions Can Be Described Quantitatively 206 Protein Structure Affects How Ligands Bind 209 Oxygen Is Transported in Blood by Hemoglobin 210 Hemoglobin Subunits Are Structurally Similar to Myoglobin 210 Hemoglobin Undergoes a Structural Change on Binding Oxygen 212

Hemoglobin Binds Oxygen Cooperatively 214

Cooperative Ligand Binding Can Be Described Quantitatively 215

Two Models Suggest Mechanisms for Cooperative Binding 215

Hemoglobin Also Transports H⁺ and CO₂ 216

Oxygen Binding to Hemoglobin Is Regulated by 2,3-Bisphosphoglycerate 218

Sick e-Cell Anemia Is a Molecular Disease of Hemoglobin 219

Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins 221

The Immune Response Features a Specialized Array of Cells and Proteins 222

Self Is Distinguished from Nonself by the Display of Peptides on Cell Surfaces 223

Molecular Interactions at Cell Surfaces Trigger the Immune Response 225

Antibodies Have Two Identical Antigen-Binding Sites 228

xx Contents

Antibodies Bind Tightly and Specifically to Antigen 230
The Antibody-Antigen Interaction Is the Basis for a Variety of Important Analytical Procedures 231

Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors 233

The Major Proteins of Muscle Are Myosin and Actin 233

Additional Proteins Organize the Thin and Thick Filaments into Ordered Structures 235

Myosin Thick Filaments Slide along Actin Thin Filaments 237

Summary 238 Further Reading 239 Problems 240

8 Enzymes 243

An Introduction to Enzymes 244

Most Enzymes Are Prote ns 244

Enzymes Are Classified by the Reactions They Catalyze 246

How Enzymes Work 246

Enzymes Affect Reaction Rates, Not Equilibria 247

Reaction Rates and Equilibria Have Precise Thermodynamic Definitions 249

A Few Principles Explain the Catalytic Power and Specificity of Enzymes 250

Weak Interactions between Enzyme and Substrate Are Optimized in the Transition State 251

Binding Energy Contributes to Reaction Specificity and Catalysis 253

Specific Catalytic Groups Contribute to Catalysis 255

Enzyme Kinetics As an Approach to Understanding Mechanism 257

Substrate Concentration Affects the Rate of Enzyme-Catalyzed Reactions 257

The Relationship between Substrate Concentration and Reaction Rate Can Be Expressed Quantitatively 259

■ Box 8-1 Transformations of the Michaelis-Menten Equation: The Double-Reciprocal Plot 261

Kinetic Parameters Are Used to Compare Enzyme Activities 261
Many Enzymes Catalyze Reactions with Two or More
Substrates 264

Pre-Steady State Kinetics Can Provide Evidence for Specific Reaction Steps 265

Enzymes Are Subject to Inhibition 265

Reversible Inhibition Can Be Competitive, Uncompetitive, or Mixed 266

■ Box 8-2 Kinetic Tests for Determining Inhibition Mechanisms 267

Irreversible inhibition Is an Important Tool in Enzyme Research and Pharmacology 268

Enzyme Activity Is Affected by pH 269

Examples of Enzymatic Reactions 269

■ Box 8–3 Evidence for Enzyme—Transition State Complementarity 270

Reaction Mechanisms Illustrate Principles 272

Regulatory Enzymes 278

Allosteric Enzymes Undergo Conformational Changes in Response to Modulator Binding 278

The Regulatory Step in Many Pathways is Catalyzed by an Allosteric Enzyme 280

The Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior 280

Some Regulatory Enzymes Undergo Reversible Covalent Modification 281

Phosphoryl Groups Affect the Structure and Catalytic Activity of Proteins 282

Multiple Phosphorylations Allow Exquisite Regulatory Control 284

Some Types of Reguration Require Proteolytic Cleavage of an Enzyme Precursor 286

Some Regulatory Enzymes Use Multiple Regulatory Mechanisms 287

Summary 288 Further Reading 289 Problems 290

9 Carbohydrates and Glycobiology 293

Monosaccharides and Disaccharides 294

The Two Families of Monosaccharides Are Aldoses and Ketoses 294

Monosaccharides Have Asymmetric Centers 295

The Common Monosaccharides Have Cyclic Structures 297

Organisms Contain a Variety of Hexose Derivatives 299

Monosaccharides Are Reducing Agents 301

Disaccharides Contain a Glycosidic Bono 301

Polysaccharides 303

Starch and Glycogen Are Stored Fuels 304

Cellulose and Chitin Are Structural Homopolysaccharides 306

Bacterial Cell Walls Contain Peptidoglycans 307

Glycosaminoglycans Are Components of the Extracellular Matrix 308

Glycoconjugates: Proteoglycans, Glycoproteins, and Glycolipids 311

Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix 311

Glycoproteins Are Information-Rich Conjugates Containing Oligosaccharides 313

Glycolipids and Lipopolysaccharides Are Membrane Components 314

Oligosaccharide-Lect:n Interactions Mediate Many Biological Processes 315

Analysis of Carbohydrates 318

Summary 320 Further Reading 321 Problems 322

Contents xxi

10 Nuclentides and Nucleic Acids 325

Some Basics 325

Nucleotides and Nucleic Acids Have Characteristic Bases and Pentoses 325

Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids 329

The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids 331

Nucleic Acid Structure 332

DNA Stores Genetic Information 333

DNA Mo ecules Have Distinctive Base Compositions 334

DNA Is a Double Helix 335

DNA Can Occur in Different Three-Dimens onal Forms 337

Certain DNA Sequences Adopt Unusual Structures 339

Messenger RNAs Code for Polypeptide Chains 341

Many RNAs Have More Complex Three-Dimensional Structures 342

Nucleic Acid Chemistry 345

Double-Helical DNA and RNA Can Be Denatured 345

Nucleic Acids from Different Species Can Form Hybrids 347

Nucleotides and Nucleic Acids Undergo Nonenzymatic Transformations 348

Some Bases of DNA Are Methylated 351

The Sequences of Long DNA Strands Can Be Determined 351

The Chemical Synthesis of DNA Has Been Automated 354

Other Functions of Nucleotides 354

Nucleotides Carry Chemical Energy in Cells 354

Aderine Nucleotides Are Components of Many Enzyme Cofactors 356

Some Nucleotides Are Regulatory Molecules 358

Summary 359 Further Reading 360 Problems 361

11 Lipids 363

Storage Lipids 363

Fatty Acids Are Hydrocarbon Derivatives 363

Triacylglycerols Are Fatty Acid Esters of Glycerol 366

Triacylglycerols Provide Stored Energy and Insulation 366

■ Box 11-1 Sperm Whales: Fatheads of the Deep 367

Many Foods Contain Triacylglycerols 368

Waxes Serve as Energy Stores and Water Repellents 368

Structural Lipids in Membranes 369

Glycerophospholipids Are Derivatives of Phosphatidic Acid 369

Some Phospholipids Have Ether-Linked Fatty Acids 371

Sphingolipids Are Derivatives of Sphingosine 372

Sphingolipids at Cell Surfaces Are Sites of Biological Recognition 373

Phospholipids and Sphingolipids Are Degraded in Lysosomes 374

■ Box 11-2 Inherited Human Diseases Resulting from Abnormal Accumulations of Membrane Lipids 375

Sterols Have Four Fused Carbon Rings 376

Lipids as Signals, Cofactors, and Pigments 376

Phosphatidylinositols Act as Intracellular Signals 377

Eicosanoids Carry Messages to Nearby Cells 378

Stero d Hormones Carry Messages between Tissues 379

Vitamins A and D Are Hormone Precursors 380

Vitamins E and K and the Lipid Quinones Are Oxidation-Reduction Cofactors 382

Dolichols Activate Sugar Precursors for Biosynthesis 382

Separation and Analysis of Lipids 383

Lipid Extraction Requires Organic Solvents 384

Adsorption Chromatography Separates Lipids of Different Polarity 384

Gas-Liquid Chromatography Resolves Mixtures of Volatile Lipid Derivatives 385

Specific Hydrolysis Aids in Determination of Lipid Structure 385 Wass Spectrometry Reveals Complete Lipid Structure 386

Summary 386 Further Reading 387 Problems 388

12 Biological Membranes and Transport 389

The Molecular Constituents of Membranes 390

Each Type of Membrane Has Characteristic Lipids and Proteins 390

The Supramolecular Architecture of Membranes 391

A Lipid Bilayer Is the Basic Structural Element of Memoranes 392

Membrane Lipids Are in Constant Mction 394

Membrane Proteins Diffuse Laterally in the Bilayer 395

■ Box 12-1 Looking at Membranes 396

Some Membrane Proteins Span the Lipid Bilayer 396

Peripheral Membrane Proteins Are Easily Solubilized 398

Covalently Attached Lipids Anchor Some Peripheral Membrane Proteins 400

Integral Proteins Are Held in the Membrane by Hydrophobic Interactions with Lipids 400

The Topology of an Integral Membrane Protein Can Sometimes Be Predicted from Its Sequence 402

Integral Proteins Mediate Cell-Cell Interactions and Adhesion 404

Membrane Fusion Is Central to Many Biological Processes 405

Solute Transport across Membranes 408

Passive Transport Is Facilitated by Membrane Proteins 408

Aquaporins Form Hydrophilic Transmembrane Channels for the Passage of Water 410

The Glucose Transporter of Erythrocytes Mediates Passive Transport 411

Chloride and Bicarbonate Are Cotransported across the Erythrocyte Membrane 413 Box 12-2 Defective Glucose and Water Transport in Two Forms of Diabetes 414

Active Transport Results in Solute Movement against a Concentration or Electrochemical Gradient 415

There Are at Least Four General Types of Transport ATPases 416

■ Box 12-3 A Defective Ion Channel Causes Cystic Fibrosis 418

A P-Type ATPase Catalyzes Active Cotransport of Na $^{\!\scriptscriptstyle +}$ and K $^{\scriptscriptstyle +}$ $\,$ 420

ATP-Driven Ca²⁺ Pumps Maintain a Low Concentration of Calcium in the Cytosol 421

Ion Gradients Provide the Energy for Secondary Active Transport 422

Ion-Selective Channels Allow Rapid Movement of Ions across Membranes 424

The Structure of a K⁺ Channel Shows the Basis for Its Ion Specificity 424

The Acetylcholine Receptor is a Ligand-Gated Ion Channel 426

The Neuronal Na⁺ Channel Is a Voltage-Gated Ion Channel 428 Ion-Channel Function Is Measured Electrically 429

Defective Ion Channels Can Have Striking Physiological Consequences 430

Porins Are Transmembrane Channels for Sma I Molecules 430

Summary 432 Further Reading 433 Problems 434

13 Biosignaling 437

Molecular Mechanisms of Signal Transduction 437

■ Box 13-1 Scatchard Analysis Quantifies the Receptor-Ligand Interaction 439

Gated Ion Channels 441

Ion Channels Underlie Electrical Signaling in Excitable Cells 441
The Nicotinic Acetylcholine Receptor Is a Ligand-Gated Ion
Channel 443

Voltage-Gated Ion Channels Produce Neuronal Action Potentials 444

Neurons Have Receptor Channels That Respond to a Variety of Neurotransmitters 445

Receptor Enzymes 445

The Insulin Receptor Is a Tyrosine-Specific Protein Kinase 445
Guanylyl Cyclase Is a Receptor Enzyme That Generates the Second
Messenger cGMP 448

G Protein-Coupled Receptors and Second Messengers 449

The β -Adrenergic Receptor System Acts through the Second Messenger cAMP 449

The β-Adrenergic Receptor Is Desensitized by Phosphorylation 454

Cyclic AMP Acts as a Second Messenger for a Number of Regulatory Molecules 454

Two Second Messengers Are Derived from Phosphatidylinositols 456

Calcium Is a Second Messenger in Many Signal Transductions 457

Sensory Transduction in Vision, Olfaction, and Gustation 458

Light Hyperpolarizes Rod and Cone Cells of the Vertebrate Eye 458

Light Triggers Conformational Changes in the Receptor Rhodopsin 460

Excited Rhodopsin Acts through the G Protein Transducin to Reduce the cGMP Concentration 460

Signal Amplification Occurs in Rod and Cone Cells 460

The Visual Signal Is Terminated Quickly 461

Rhodopsin Is Desensitized by Phosphorylation 462

Cone Cells Specialize in Color Vision 462

■ Box 13-2 Color Blindness: John Dalton's Experiment from the Grave 463

Vertebrate Olfaction and Gustation Use Mechanisms Similar to the Visual System 463

G Protein-Coupled Serpentine Receptor Systems Share Several Features 465

Disruption of G-Protein Signaling Causes Disease 466

Phosphorylation as a Regulatory Mechanism 467

Localization of Protein Kinases and Phosphatases Affects the Specificity for Target Proteins 467

Regulation of Transcription by Steroid Hormones 468

Regulation of the Cell Cycle by Protein Kinases 469

The Cell Cycle Has Four Stages 469

Levels of Cyclin-Dependent Protein Kinases Oscillate 469 CDKs Regulate Cell Division by Phosphorylating Critical Proteins 473

Oncogenes, Tumor Suppressor Genes, and Programmed Cell Death 474

Oncogenes Are Mutant Forms of the Genes for Proteins that Regulate the Cell Cycle 474

Defects in Tumor Suppressor Genes Remove Normal Restraints on Cell Division 475

Apoptosis is Programmed Cell Suicide 476

Summary 478 Further Reading 479
Problems 481

III Bioenergetics and Metabolism 485

14 Principles of Bioenergetics 490

Bioenergetics and Thermodynamics 491

Biological Energy Transformations Obey the Laws of Thermodynamics 491

■ Box 14-1 Entropy: The Advantages of Being Disorganized 492 Cells Require Sources of Free Energy 493

The Standard Free-Energy Change Is Directly Related to the Equilibrium Constant 494

Actual Free-Energy Changes Depend on Reactant and Product Concentrations 496

Standard Free-Energy Changes Are Additive 498

Contents xxiii

Phosphoryl Group Transfers and ATP 499

The Free-Energy Change for ATP Hydrolysis Is Large and Negative 500

■ Box 14-2 The Free Energy of Hydrolysis of ATP within Cells: The Real Cost of Doing Metabolic Business 501

Other Phosphorylated Compounds and Thioesters Also Have Large Free Energies of Hydrolysis 502

ATP Provides Energy by Group Transfers, Not by Simple Hydrolysis 504

ATP Donates Phosphoryl, Pyrophosphoryl, and Adenylyl Groups 506

Assembly of Informational Macromo ecules Requires Energy 508 ATP Energizes Active Transport and Muscle Contraction 508

■ Box 14–3 Firefly Fiashes: Glowing Reports of ATP 509

Transphosphorylations between Nucleotides Occur in All Cell Types 510

Inorganic Polyphosphate Is a Potential Phosphoryl Group Donor 511

Biochemical and Chemical Equations Are Not Identical 511

Biological Oxidation-Reduction Reactions 512

The Flow of Electrons Can Do Biological Work 512
Oxidation-Reductions Can Be Described as Half-Reactions 513
Biolog cal Oxidations Often Involve Dehydrogenation 514
Reduction Potentials Measure Affinity for Electrons 515
Standard Reduction Potentials Can Be Used to Calculate
Free-Energy Change 516

Cellular Oxidation of Glucose to Carbon Dioxide Requires Specialized Electron Carriers 517

A Few Types of Coenzymes and Proteins Serve as Universal Electron Carriers 518

NADH and NADPH Act with Dehydrogenases as Soluble Electron Carriers 518

Flavin Nucleotides Are Tightly Bound in Flavoproteins 520

Summary 522 Further Reading 523 Problems 524

15 Glycolysis and the Catabolism of Hexoses 527

Glycolysis 527

An Overview: Glycolysis Has Two Phases 528
The Preparatory Phase of Glycolysis Requires ATP 532
The Payoff Phase of Glycolysis Produces ATP and NADH 535
The Overall Balance Sneet Shows a Net Gain of ATP 540
Intermediates Are Channeled between Glycolytic Enzymes 540
Glycolysis Is under Tight Regulation 541
Glucose Catabolism is Deranged in Cancerous Tissue 541

Fates of Pyruvate under Aerobic and Anaerobic Conditions 542

Pyruvate Is the Terminal Electron Acceptor in Lactic Acid Fermentation 542

- Box 15-1 Glycolysis at Limiting Concentrations of Oxygen: Athletes, Alligators, and Coeiacanths 543
- Box 15-2 Brewing Beer 544

Ethanol Is the Reduced Product in Alcohol Fermentation 544
Thiamine Pyrophosphate Carries "Active Aldehyde" Groups 545
Microbial Fermentations Yield Other End Products of Commercial
Value 546

Feeder Pathways for Glycolysis 547

Glycogen and Starch Are Degraded by Phosphorolysis 547

Other Monosaccharides Enter the Glycolytic Pathway at Several Points 549

Dietary Polysaccharides and Disaccharides Are Hydrolyzed to Monosaccharides 550

Regulation of Carbohydrate Catabolism 551

Regulatory Enzymes Act as Metabolic Valves 551

Glycolysis and Gluconeogenesis Are Coordinately Regulated 553

Phosphofructokinase-1 Is under Complex Allosteric Regulation 554

Hexokinase Is Allosterically Inhibited by Its Reaction Product 555

■ Box 15-3 Isozymes: Different Proteins, Same Reaction 556

Pyruvate Kinase Is Inhibited by ATP 556

Glycogen Phosphorylase Is Regulated Allosterically and Hormonally 557

The Pentose Phosphate Pathway of Glucose Oxidation 558

Box 15-4 Glucose 6-Phosphate Dehydrogenase Deficiency: Why Pythagoras Wouldn't Eat Falafe! 560

Summary 561 Further Reading 562 Problems 563

16 The Citric Acid Cycle 567

Production of Acetate 568

Ccenzymes 569

Pyruvate Is Oxidized to Acetyl-CoA and CO₂ 568
The Pyruvate Dehydrogenase Complex Requires Five

The Pyruvate Dehydrogenase Complex Consists of Three Distinct Enzymes 570

Intermediates Remain Bound to the Enzyme Surface 570

Reactions of the Citric Acid Cycle 571

The Citric Acid Cycle Has Eight Steps 573

Box 16-1 Synthases and Synthetases; Ligases and Lyases; Kinases, Phosphatases, and Phosphorylases: Yes, the Names Are Confusing! 576

The Energy of Oxidations in the Cycle Is Effic ently Conserved 579

■ Box 16-2 Citrate: A Symmetrical Molecule That Reacts Asymmetrically 580

Why is the Oxidation of Acetate So Complicated? 581 Citric Acid Cycle Components Are Important Biosynthetic Intermediates 583

■ Box 16-3 Citrate Synthase, Soda Pop, and the World Food Supply 583

Anapterotic Reactions Replenish Citric Acid Cycle Intermediates 584 xxiv Contents

Biotin in Pyruvate Carboxylase Carries CO₂ Groups 585

Regulation of the Citric Acid Cycle 586

Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by Allosteric and Covalent Mechanisms 586 The Citric Acid Cycle Is Regulated at Its Three Exergonic

Steps 587

The Glyoxylate Cycle 588

The Glyoxylate Cycle Produces Four-Carbon Compounds from Acetate 589

The Citric Acid and Glyoxylate Cycles Are Coordinately Regulated 590

Summary 592 Further Reading 592 Problems 594

17 Oxidation of Fatty Acids 598

Digestion, Mobilization, and Transport of Fatty Acids 599

Dietary Fats Are Absorbed in the Small Intestine 599
Hormones Trigger Mobilization of Stored Triacylglycerols 601
Fatty Acids Are Activated and Transported into
Mitochondria 602

8 Oxidation 604

 β Oxidation of Saturated Fatty Acids Has Four Basic Steps 604 The Four Steps Are Repeated to Yield Acetyl-CoA and ATP 605

■ Box 17–1 Fat Bears Carry Out β Oxidation in Their Sleep 606 Acetyl-CoA Can Be Further Oxidized in the Citric

Acid Cycle 607
Oxidation of Unsaturated Fatty Acids Requires Two Additional Reactions 607

Complete Oxidation of Odd-Number Fatty Acids Requires Three Extra Reactions 608

■ Box 17-2 Coenzyme B₁₂: A Radical Solution to a Perplexing Problem 610

Fatty Acid Oxidation Is Tightly Regulated 612

Peroxisomes Also Carry Out β Oxidation 612

Plant Peroxisomes and Glyoxysomes Use Acetyl-CoA from \$\beta\$ Oxidation as a Biosynthetic Precursor 613

The β -Oxication Enzymes of Different Organelles Have Diverged during Evolution 614

Omega Oxidation Occurs in the Endoplasmic Reticulum 614
Genetic Defects in Fatty Acyl-CoA Dehydrogenases Cause Sericus
Disease 615

Ketone Bodies 615

Ketone Bodies Formed in the Liver Are Exported to Other Organs 616

Extrahepatic Tissues Use Ketone Bodies as Fuels 617
Ketone Bodies Are Overproduced in Diabetes and during
Starvation 617

Summary 618 Further Reading 619 Problems 620

18 Amino Acid Oxidation and the Production of Urea 623

Metabolic Fates of Amino Groups 624

Dietary Protein Is Enzymatically Degraded to Amino Ac.ds 626 Pyridoxal Phosphate Participates in the Transfer of α -Amino Groups to α -Ketoglutarate 628

■ Box 18-1 Assays for Tissue Damage 631
Grutamate Releases Ammonia in the Liver 631
Grutamine Transports Ammonia in the Bloodstream 632
Alanine Transports Ammonia from Muscles to the Liver 632
Ammonia Is Toxic to Animals 633

Nitrogen Excretion and the Urea Cycle 634

Jrea Is Produced from Ammonia in Five Enzymatic Steps 635
The Citric Acid and Urea Cycles Can Be Linked 636
The Activity of the Urea Cycle Is Regulated at Two Levels 636
Pathway Interconnections Reduce the Energetic Cost of Urea
Synthesis 637

Genetic Defects in the Urea Cycle Can Be Life-Threatening 637 Natural Habitat Determines the Pathway for Nitrogen Excretion 638

Pathways of Amino Acid Degradation 639

Several Enzyme Cofactors Play Important Roles in Amino Acid Catabolism 640

Ten Amino Acids Are Degraded to Acetyl-CoA 643
Phenylalanine Catabolism is Genetically Defective in Some
People 646

Five Amino Acids Are Converted to α-Ketoglutarate 648
Four Amino Ac ds Are Converted into Succinyl-CoA 650
Branched-Chain Amino Acids Are Not Degraded in the Liver 651

■ Box 18-2 Scientific Steuths Solve a Murder Mystery 654
Asparagine and Aspartate Are Degraded to Oxaloacetate 653

Asparagine and Aspartate Are Degraded to Oxaloacetate 653

Some Amino Acids Can Be Converted to Glucose, Others to Ketone

Bodies 654

Summary 654 Further Reading 655 Problems 656

19 Oxidative Phosphorylation and Photophosphorylation 659

Oxidative Phosphorylation 660

Electon-Transfer Reactions in Mitochondria 660

Electrons Are Funneled to Universal Electron Acceptors 661
Electrons Pass through a Series of Membrane-Bound Carriers 662
Electron Carriers Function in Multienzyme Complexes 666
The Energy of Electron Transfer Is Efficiently Conserved in a

Proton Gradient 672

Plant Mitochondria Have Alternative Mechanisms for Oxidizing NADH 673

Box 19-1 Alternative Respiratory Pathways and Hot, Stinking Plants 674

ATP Synthesis 675

Contents xx

ATP Synthase Has Two Functional Domains, F₀ and F₁ 678 ATP is Stabilized Relative to ADP on the Surface of F₁ 678

The Proton Gradient Drives the Release of ATP from the Enzyme Surface 679

Each β Subunit of ATP Synthase Can Assume Three Different Conformations 680

Rotational Catalysis Is Key to the Binding-Change for ATP Synthesis 682

Chemiosmotic Coupling Allows Nonintegral Stoichiometries of O₂ Consumption and ATP Synthesis 683

The Proton-Motive Force Energizes Active Transport 684
Shuttle Systems Are Required for Mitochondrial Oxidation of
Cytosolic NADH 685

Regulation of Oxidative Phosphorylation 686

Oxidative Phosphorylation Is Regulated by Cellular Energy Needs 687

Uncoupled Mitochondria in Brown Fat Produce Heat 687
ATP-Producing Pathways Are Coordinately Regulated 688
Mutations in Mitochondrial Genes Cause Human Disease 688
Mitochondria Probably Evolved from Endosymbiotic Bacteria 690

Photosynthesis: Harvesting Light Energy 691

General Features of Photophosphorylation 691

Photosynthesis in Higher Plants Takes Place in Chloroplasts 692 Light Drives Electron Flow in Chloroplasts 692

Light Absorption 693

Chlorophylls Absorb Light Energy for Photosynthesis 693
Accessory Pigments Extend the Range of Light Absorption 696
Chlorophyll Funnels Absorbed Energy to Reaction Centers by
Exciton Transfer 697

The Central Photochemical Event: Light-Driven Electron Flow 699

Bacteria Have One of Two Types of Single Photochemical Reaction Centers 699

Kinetic and Thermodynamic Factors Prevent Energy Dissipation by Internal Conversion 702

In Higher Plants, Two Reaction Centers Act in Tandem 702 Spatial Separation of Photosystems I and II Prevents Exciton Larceny 705

The Cytochrome $b_6 f$ Complex Links Photosystems II and I = 706 Cyanobacteria Use the Cytochrome $b_6 f$ Complex and Cytochrome c in Both Oxidative Phosphorylation and Photophosphorylation = 706

Water is Split by the Oxygen-Evolving Complex 707

ATP Synthesis by Phosphorylation 708

A Proten Gradient Couples Electron Flow and Phosphorylation 708
The Approximate Stoichiometry of Photophosphorylation Has Been Established 709

Cyclic Electron Flow Produces ATP but Not NADPH or O₂ 710 The ATP Synthase of Chloroplasts Is Like That of

Mitochonoria 710

Chloroplasts Probably Evolved from Endosymbiotic Cyanobacteria 711

Diverse Photosynthetic Organisms Use Hydrogen Donors Other Than Water 711

In Halophilic Bacteria, a Single Protein Absorbs Light and Pumps Protons to Drive ATP Synthesis 712

Summary 714 Further Reading 715 Problems 718

20 Carbohydrate Biosynthesis 722

Gluconeogenesis 723

Conversion of Pyruvate to Phosphoenolpyruvate Requires Two Exergonic Reactions 726

Conversion of Fructose 1,6-Bisphospnate into Fructose 6-Phosphate is the Second Bypass 728

Conversion of Glucose 6-Phosphate to Free Glucose Is the Third Bypass 728

Gluconeogenesis Is Expensive 729

Citric Acid Cycle Intermediates and Many Amino Acids Are Glucogenic 730

Futile Cycles in Carbohydrate Metabolism Consume ATP 730
Gluconeogenesis and Glycolysis Are Reciprocally Regulated 731
Gluconeogenesis Converts Fats and Proteins to Glucose in
Germinating Seeds 733

Biosynthesis of Glycogen, Starch, Sucrose, and Other Carbohydrates 735

UDP-Glucose is the Substrate for Glycogen Synthesis 736 Glycogen Synthase and Glycogen Phosphorylase Are Reciprocally Regulated 738

ADP-Glucose Is the Substrate for Starch Synthesis in Plants and Glycogen Synthesis in Bacteria 739

UDP-Glucose Is the Substrate for Sucrose Synthesis in Plants 741

Lactose Synthesis Is Regulated in a Unique Way 742
UDP-Glucose Is an Intermediate in the Formation of Glucuronate

and Vitamin C 743
Sugar Nucleotides Are Precursors in Bacterial Cell Wall

Synthesis 744

 Box 20–1 Penicillin and β-Lactamase: The Magic Bullet Versus the Bulletproof Vest 746

Photosynthetic Carbohydrate Synthesis 746

Carbon Dioxide Assimilation Occurs in Three Stages 748
Each Triose Phosphate Synthesized from CO₂ Costs Six NADPH and Nine ATP 754

A Transport System Exports Triose Phosphates from the Chloroplast and Imports Phosphate 755

Regulation of Carbohydrate Metabolism in Plants 757

Rubisco Is Subject to Both Positive and Negative Regulation 757
Certain Enzymes of the Calvin Cycle Are Indirectly Activated by Light 758

The Use of Triose Phosphates for Sucrose and Starch Synthesis is Tightly Regulated in Plants 759

Photorespiration Results from Rubisco's Oxygenase Activity 760 Some Plants Have a Mechanism to Minimize Photorespiration 761

Summary 763 Further Reading 765 Problems 766

21 Lipid Biosynthesis 770

Biosynthesis of Fatty Acids and Eicosanoids 770

Malonyl-CoA Is Formed from Acetyl-CoA and Bicarbonate 770
Fatty Acids Are Synthesized by a Repeating Reaction
Sequence 772

The Fatty Acid Synthase Complex Has Seven Different Active Sites 772

Fatty Acid Synthase Receives the Acetyl and Malonyl Groups 774
The Fatty Acid Synthase Reactions Are Repeated to Form
Palmitate 776

The Fatty Acid Synthase of Some Organisms Is Composed of Multifunctional Proteins 777

Fatty Acid Synthesis Occurs in the Cytosol of Many Organisms but in the Chloroplasts of Plants 778

Acetate Is Shuttled out of Mitochoncria as Citrate 779
Fatty Acid Biosynthesis Is Tightly Regulated 780
Long-Chain Fatty Acids Are Synthesized from Palmitate 781
Some Fatty Acids Are Desaturated 781

 Box 21–1 Mixed-Function Oxidases, Oxygenases, and Cytochrome P-450 782

Eicosanoids Are Formed from 20-Carbon Polyunsaturated Fatty Acids 784

Box 21-2 Cyclooxygenase Isozymes and the Search for a Better Aspirin: Relief Is in (the Active) Site 786

Biosynthesis of Triacylglycerols 786

Triacylglycerols and Glycerophospholipids Are Synthesized from the Same Precursors 788

Triacylglycerol Biosynthesis in Animals Is Regulated by Hormones 790

Biosynthesis of Membrane Phospholipids 791

There Are Two Strategies for Attaching Head Groups 791

Phospholipid Synthesis in *E. coli* Employs CDP-Diacylglycerol 792

Eukaryotes Synthesize Acidic Phospholipids from CDP-Diacy:glycerol 794

Eukaryotic Pathways to Phosphatidylserine, Phosphatidylethanolamine, and Phosphatidylcholine Are Interrelated 794 Plasmalogen Synthes s Requires Formation of an Ether-Linked Fatty Alcohol 796

Sphingolipid and Glycerophospholipid Synthesis Share Precursors and Some Mecnanisms 798

Polar Lipids Are Targeted to Specific Cell Membranes 798

Biosynthesis of Cholesterol, Steroids, and Isoprenoids 799

Cholestero: Is Made from Acetyl-CoA in Four Stages 799

Cholesterol Fas Several Fates 804

Cholesterol and Other Lipids Are Carried on Plasma Lipoproteins 804

 Box 21-3 Apolipoprotein E Alleles Predict Incidence of Alzheimer's Disease 808

Cholesteryl Esters Enter Cells by Receptor-Mediated Endocytosis 809

Cholesterol Biosynthesis Is Regulated by Several Factors 810

Steroid Hormones Are Formed by Side Chain Cleavage and Oxidation of Cho esterol 812

Intermediates in Cholesterol Biosynthesis Have Many Alternative Fates 812

Summary 814 Further Reading 815 Problems 816

22 Biosynthesis of Amino Acids, Nucleotides, and Related Molecules 818

Overview of Nitrogen Metabolism 819

The Nitrogen Cycle Maintains a Pool of Biologically Available Nitrogen 819

Nitrogen Is Fixed by Enzymes of the Nitrogenase Complex 820 Ammonia Is Incorporated into Biomolecules through Glutamate and Glutamine 823

Glutamine Synthetase Is a Primary Regulatory Point in Nitrogen Wetabolism 824

Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides 826

Biosynthesis of Amino Acids 826

 $\alpha\textsc{-Ketoglutarate}$ Gives Rise to Glutamate, Glutamine, Proline, and Arginine 829

Serine, Glycine, and Cysteine Are Derived from 3-Phosphoglycerate 829

Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate and Pyruvate 831

Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Pnenylalanine, and Tyrosine 834

Histidine Biosynthesis Uses Precursors of Purine Biosynthesis 839

Amino Acid Biosynthesis Is under Allosteric Regulation 839

Molecules Derived from Amino Acids 840

Glycine Is a Precursor of Porphyrins 840

■ Box 22-1 Biochemistry of Kings and Vampires 841

Degradation of Heme Yie ds Bile Pigments 842

Amino Acics Are Required for the Biosynthesis of Creatine and Glutatnione 842

D-Amino Acids Are Found Primarily in Bacteria 843

Aromatic Amino Acids Are Precursors of Many Plant Substances 843

Amino Acids Are Converted to Biological Amines by Decarboxylation 844

■ Box 22-2 Curing African Sleeping Sickness with a Biochemical Trojan Horse 846

Contents xxvii

Arginine Is the Precursor for Synthesis of Nitric Oxide 848

Biosynthesis and Degradation of Nucleotides 848

De Novo Purine Synthesis Begins with PRPP 849

Purine Nucleotice Biosynthesis Is Regulated by Feedback Inhibition 852

Pyrimidine Nucleotides Are Made from Aspartate, PRPP, and Carbamoyl Phosphate 853

Pyrimidine Nucleotide Biosynthesis Is Regulated by Feedback Inhibition 855

Nucleoside Monophosphates Are Converted to Nucleoside Triphosphates 855

Ribonucleotices Are the Precursors of the Deoxyribanucleotides 856

Thymidylate Is Derived from dCDP and dUMP 860

Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively 861

Purine and Pyrimidine Bases Are Recycled by Salvage Pathways 862

Overproduction of Uric Acid Causes Gout 863

Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways 863

Summary 865 Further Reading 866 Problems 867

23 Integration and Hormonal Regulation of Mammalian Metabolism 869

Tissue-Specific Metabolism: The Division of Labor 869

The Liver Processes and Distributes Nutrients 870

Adipose Tissue Stores and Supplies Fatty Acids 873

Muscle Uses ATP for Mechanical Work 874

The Brain Uses Energy for Transmission of Electrical Impulses 876

Blood Carries Oxygen, Metabolites, and Hormones 877

Hormonal Regulation of Fuel Metabolism 878

Ep nephrine Signals Impending Activity 878

Glucagon Signals Low Blood Glucose 879

During Fasting and Starvation, Metabolism Shifts to Provide Fuel for the Brain 880

Insulin Signals High Blood Glucose 882

Cortisol Signals Stress, Including Low Blood Glucose 882

Diabetes Is a Defect in Insulin Production or Action 883

Hormones: Diverse Structures for Diverse Functions 884

Hormone Discovery and Purification Requires a Bioassay 884

■ Box 23-1 How is a Hormone Discovered? The Arduous Pathway to Purified Insulin 885

Hormones Act through Specific High-Affinity Cellular Receptors 887

Hormones Are Chemically Diverse 889

What Regulates the Regulators? 893

Long-Term Regulation of Body Mass 896

Leptin Was Predicted by the Lipostat Theory 896

Many Factors Regulate Feeding Behavior and Energy Expenditure 898

Leptin Triggers a Regulatory Cascade 898

The Leptin System May Have Evolved to Regulate the Starvation Response 899

Summary 900 Further Reading 901 Problems 902

IV Information Pathways 905

24 Genes and Chromosomes 907

Chromosomal Elements 908

Genes Are Segments of DNA That Code for Polypept de Chains and RNAs 908

Eukaryotic Chromosomes Are Very Complex 909

Many Eukaryotic Genes Contain Intervening Nontranscribed Sequences (Introns) 910

The Size and Sequence Structure of DNA Molecules 911

Viral DNA Molecules Are Relatively Small 911

Bacteria Contain Chromosomes and Extrachromosomal DNA 912 Eukaryotic Cells Contain More DNA Than Do Prokaryotes 914 Organelles of Eukaryotic Cells Also Contain DNA 915

DNA Supercoiling 915

Most Cellular DNA is Underwound 917

DNA Underwinding Is Defined by Topological Linking Number 918

Topoisomerases Catalyze Changes in the Linking Number of DNA 921

DNA Compaction Requires a Special Form of Supercoiling 922

Chromatin and Nucleoid Structure 923

Histories Are Small, Basic Proteins 924

Nucleosomes Are the Fundamental Organizational Units of Chromatin 924

Nucleosomes Are Packed into Successively Higher-Order Structures 926

Bacterial DNA is Also Highly Organized 927

Summary 928 Further Reading 929 Problems 930

25 DNA Metabolism 931

A Word about Terminology 933

DNA Replication 933

DNA Replication Is Governed by a Set of Fundamental Rules 933

DNA Is Degraded by Nuc eases 936

DNA Is Synthesized by DNA Polymerases 936

Replication Is Very Accurate 938

E. coli Has at Least Three DNA Polymerases 939

DNA Replication Requires Many Enzymes and Protein Factors 942

Replication of the *E. coli* Chromosome Proceeds in Stages 942 Replication in Eukaryotic Cells Is More Complex 948

DNA Repair 949

Mutations Are Linked to Cancer 949

All Cells Have Multiple DNA Repair Systems 950

■ Box 25-1 DNA Repair and Cancer 953

The Interaction of Replication Forks with DNA Damage Leads to Recombination or Error-Prone Repair 958

DNA Recombination 959

Homologous Genetic Recombination Has Multiple Functions: 960 Recombination during Meiosis Is Initiated with Double-Strand Breaks 962

Recombination Requires Specific Enzymes 963

All Aspects of DNA Metabolism Come Together to Repair Stalled Replication Forks 967

Site-Specific Recombination Results in Precise DNA Rearrangements 967

Complete Chromosome Replication Can Require Site-Specific Recomb nation 970

Transposable Genetic Elements Move from One Location to Another 970

Immunoglobulin Genes Are Assembled by Recombination 973

Summary 975 Further Reading 976 Problems 977

26 RNA Metabolism 979

DNA-Dependent Synthesis of RNA 980

RNA Is Synthesized by RNA Polymerases 980 RNA Synthesis Is Initiated at Promoters 983 Transcription Is Regulated 984

■ Box 26-1 RNA Polymerase Leaves Its Footprint on a Promoter 985

Specific Sequences Signa' Termination of RNA Synthesis 986
Eukaryotic Cells Have Three Kinds of Nuclear RNA
Polymerases 986

RNA Polymerase II Requires Many Other Proteins for Its Activity 987

RNA Processing 990

The Introns Transcribed into RNA Are Removed by Splicing 991 RNA Catalyzes Splicing 992

Eukaryotic mRNAs Undergo Additional Processing 997

Multiple Products Are Derived from One Gene by Differential RNA Processing 999

Ribosomal RNAs and tRNAs Aisc Undergo Processing 1000

Some Events in RNA Metabolism Are Catalyzed by RNA Enzymes 1003

Cellular mRNAs Are Degraded at Different Rates 1005 Polynucleotide Phosphorylase Makes Random RNA-like Polymers 1006

RNA-Dependent Synthesis of RNA and DNA 1007

Reverse Transcriptase Produces DNA from Viral RNA 1007 Retroviruses Cause Cancer and AIDS 1009

Box 26–2 Fighting AIDS with Inhibitors of HIV Reverse Transcriptase 1010

Many Transposons, Retroviruses, and Introns May Have a Common Evolutionary Origin 1010

Te'omerase Is a Specialized Reverse Transcriptase 1012
Some Viral RNAs Are Replicated by RNA-Directed RNA
Polymerase 1013

RNA Synthesis Offers Important Clues to Biochemical Evolution 1014

Summary 1017 Further Reading 1017 Problems 1019

27 Protein Metabolism 1020

The Genetic Code 1020

The Genetic Code Was Cracked Using Artificia mRNA Templates 1022

■ Box 27-1 Translational Frameshifting and RNA Editing: mRNAs That Change Horses in Midstream 1026

Wobble Allows Some tRNAs to Recognize More than One Codon 1028

■ Box 27–2 Natural Variations in the Genetic Code 1030
Overlapping Genes in Different Reading Frames Are Found in Some Viral DNAs 1032

Protein Synthesis 1034

The Ribosome Is a Complex Supramolecular Machine 1035
Transfer RNAs Have Characteristic Structural Features 1037

Stage 1: Aminoacyl-tRNA Synthetases Attach the Correct Amino Acids to Their tRNAs 1039

Stage 2: A Specific Amino Acid Initiates Protein Synthesis 1044
Stage 3: Peptide Bonds Are Formed in the Elongation Stage 1047

Stage 4: Termination of Polypeptide Synthesis Requires a Special Signal 1050

 Box 27-3 Induced Variation in the Genetic Code: Nonsense Suppression 1051

Stage 5: Newly Suppressed Polypeptide Chains Undergo Folding and Processing 1053

Protein Synthesis Is Inhibited by Many Antibiotics and Toxins 1054

Protein Targeting and Degradation 1056

Posttranslational Modification of Many Eukaryotic Proteins Begins in the Endop asmic Reticulum 1057

Glycosylation Plays a Key Role in Protein Targeting 1058

Proteins Are Targeted to Mitochondria and Chloroplasts by Similar Pathways 1061

Signal Sequences for Nuclear Transport Are Not Cleaved 1063
Bacteria Also Use Signal Sequences for Protein Targeting 1064
Cells Import Proteins by Receptor-Mediated Endocytosis 1065

Contents xxix

Protein Degradation Is Mediated by Specialized Systems in All Cells 1066

Summary 1067 Further Reading 1068 Problems 1069

28 Regulation of Gene Expression 1072

Principles of Gene Regulation 1074

RNA Polymerase Binds to DNA at Promoters 1074

Transcription Initiation Is Regulated by Proteins That Bind to or near Promoters 1074

Most Prokaryotic Genes Are Regulated in Units Called Operons 1077

The *lac* Operon Is Subject to Negative Regulation 1078
Regulatory Proteins Have Discrete DNA-Binding Domains 1080
Regulatory Proteins Also Have Protein-Protein Interaction
Domains 1084

Regulation of Gene Expression in Prokaryotes 1085

The lac Operon is Subject to Positive Regulation 1086

The ara Operon Undergoes Both Positive and Negative Regulation by a Single Regulatory Protein 1088

Many Genes for Amino Acid Biosynthesis Are Regulated by Transcription Attenuation 1091

Induction of the SOS Response Requires the Destruction of Repressor Proteins 1094

Synthesis of Ribcsomal Proteins Is Coordinated with rRNA Synthesis 1095

Some Genes Are Regulated by Genetic Recombination 1097

Regulation of Gene Expression in Eukaryotes 1099

Transcriptionally Active Chromatin Is Structurally Distinct from nactive Chromatin 1100

Modifications Increase the Accessibility of DNA 1100

Chromatir Is Remodeled by Acetylation and Nucleosomal Displacements 1100

Many Eukaryotic Promoters Are Positively Regulated 1101

DNA-Binding Transactivators and Coactivators Facilitate Assembly of the General Transcription Factors 1102

Three Classes of Proteins Are Involved in Transcriptional Activation 1102

The Genes Required for Galactose Metabolism in Yeast Are Subject to Both Positive and Negative Regulation 1104

DNA-Binding Transactivators Have a Modular Structure 1106

Eukaryotic Gene Expression Can Be Regulated by Intercellular and Intrace Jular Signals 1106

Regulation Can Occur through Phosphorylation of Nuclear Transcription Factors 1108

Many Eukaryotic mRNAs Are Subject to Translational Repression 1108

Development Is Controlled by Cascades of Regulatory Proteins 1109

Summary 1115 Further Reading 1116 Problems 1117

29 Recombinant DNA Technology 1119

DNA Cloning: The Basics 1119

Restriction Endonucleases and DNA Ligase Yield Recombinant DNA 1120

Cloning Vectors Allow Amplification of Inserted DNA Segments 1124

Isolati

Cloning a Gene Often Requires a DNA Library 1128

Specific DNA Sequences Can Be Amplified 1129

Hybridization Allows the Detection of Specific Sequences 1131

Box 29-1 A Potent Weapon in Forensic Medicine 1132

DNA Microarrays Provide Compact Libraries for Studying Genes

Applications of Recombinant DNA Technology 1135

Cloned Genes Can Be Expressed 1135

Cloned Genes Can Be Altered 1136

and Their Expression 1134

Yeast Is an Important Eukaryotic Host for Recombinant DNA 1138

Very Large DNA Segments Can Be Cloned in Yeast Artificial Chromosomes 1138

■ Box 29–2 The Human Genome and Human Gene Therapy 1140
Cloning in Plants Is Aided by a Bacterial Plant Parasite 1140
Cloning in Animal Cells Points the Way to Human Gene
Therapy 1145

Recombinant DNA Technology Yields New Products and Choices 1147

Summary 1148 Further Reading 1149
Problems 1150

Appendix A Common Abbreviations in the Biochemical Research Literature AP-1

Appendix B Abbreviated Solutions to Problems AP-4

Glossary G-1

Illustration Credits IC-1

Index I-1