

Shear Behaviour of Rock Joints

Buddhima Indraratna & Asadul Haque

Contents

ΡI	REF	ACE	IX	
1	СН	ARACTERIZATION OF JOINT SURFACE ROUGHNESS	i	
•		Introduction	1	
		Roughness measurement techniques		
		1.2.1 JRC measurement	2	
		1.2.2 Fractal method	2 2 4	
		1.2.3 Spectral method	9	
		1.2.4 Digital coordinate measuring machine	11	
		1.2.5 Fourier transform method and its application to measure		
		surface rougness	14	
	1.3	Physical and mechanical properties of intact and jointed rocks	15	
		erences	16	
2	SHI	EAR BEHAVIOUR OF CLEAN ROCK JOINTS	17	
		Introduction	17	
	2.2	2.2 CNS and CNL concepts		
		Shear apparatus for laboratory testing	21	
		2.3.1 Large scale shear boxes	21	
		2.3.2 Loading device	21	
		2.3.3 Measurements of displacements	22	
	2.4	Laboratory modelling of rock joints	23	
		2.4.1 Selection of model material for joint	23	
		2.4.2 Preparation of saw-tooth and natural specimens	23	
		2.4.3 Sampling and preparation of field joint specimens	24	
	2.5	Laboratory testing of rock joints	25	
		2.5.1 Shear strength response under Constant Normal Stiffness	26	
		2.5.2 Normal stress and dilation behaviour	27	
		2.5.3 Effect of normal stiffness on joint shear behaviour	28	
		2.5.4 Effect of stiffness on shear displacement corresponding to		
		peak shear stress	28	
		2.5.5 Effect of shear rate on the strength of joint	28	

VI Contents

	2.6	Tests on soft rock joints				
		2.6.1 Effect of shear displacement rate	29			
		2.6.2 Effect of boundary condition on shear behaviour	31			
		2.6.3 Behaviour of unfilled/clean regular joints under CNS	36			
		2.6.4 Shear behaviour of natural (field) joints	37			
		2.6.5 Stress-path response of Type I, II and III joints	42			
		2.6.6 Strength envelopes for Types I, II and III	44			
	2.7	Empirical models for the prediction of shear strength of rock joints	45			
	2.8	Summary of behaviour of unfilled/clean joints	49			
		2.8.1 Effect of shear rate on shear behaviour of joints under CNS	49			
		2.8.2 Effect of boundary condition on shear behaviour	50			
		2.8.3 Shear behaviour of soft unfilled joint under CNS	51			
	Ref	References				
3	INFILLED ROCK JOINT BEHAVIOUR					
		Influence of infill on rock joint shear strength	54			
	3.2	Factors controlling infilled joint shear strength	55			
		3.2.1 Effect of joint type on shear behaviour	56			
		3.2.2 Infill type and thickness	56			
		3,2.3 Effect of drainage condition	63			
		3.2.4 Infill boundary condition	63			
		3.2.5 Infill-rock interaction	64			
		3.2.6 Effect of external stiffness	67			
		3,2.7 Normal stress and lateral confinement	68			
	3.3	Laboratory testing on infilled rock joints	68			
		3.3.1 Selection of infill material	70			
		3.3.2 Preparation of infilled joint surface	70			
		3.3.3 Setting-up the specimen in the shear boxes	71			
		3.3.4 Application of normal load	71			
		3.3.5 Shear behaviour of Type I joints	74			
		3.3.6 Shear behaviour of Type II joints	77			
		3.3.7 Effect of infill thickness on horizontal displacement corre-	77			
		sponding to peak shear stress				
		3.3.8 Effect of infill thickness on stress-path behaviour	81 83			
		3.3.9 Effect of infill thickness on peak shear stress	83			
		3.3.10 Drop in peak shear strength	87			
	2.	3.3.11 Strength envelope	87 87			
	3.4 Shear strength model for infilled joints					
	3.5 Remarks on infilled joint behaviour References					
	Ket	erences	91			
4	-	DELLING THE SHEAR BEHAVIOUR OF ROCK JOINTS	93			
	411	Introduction	93			

	Contents	vII
	4.2 Existing models based on CNS concept	94
	4.2.1 Model based on energy balance principles	94
	4.2.2 Mechanistically based model	97
	4.2.3 Graphical model	98
	4.2.4 Analytical model	98
	4.3 Requirement of a new model	102
	4.4 New shear strength model for soft rock joints	102
	4.4.1 Application of Fourier transform method for predicting un-	
	filled joint dilation	102
	4.4.2 Prediction of normal stress with horizontal displacement	104
	4.4.3 Prediction of shear stress with horizontal displacement	105
	4.5 Effect of infill on the shear strength of joint	113
	4.5.1 Hyberbolic modelling of strength drop associated with infill	
	thickness	113
	4.5.2 Shear strength relationship between unfilled and infilled joints	115
	4.5.3 Determination of hyperbolic constants	115
	4.6 Development of a computer code	119
	4.7 Comparison between predicted and experimental results	119
	4.7.1 Dilation	119
	4.7.2 Normal stress	119
	4.7.3 Shear stress	124
	4.7.4 Strength envelopes	126
	4.7.5 Infilled joint strength	127
	4.8 UDEC analysis of shear behaviour of joints	127
	4.8.1 Choice of joint models	127
	4.8.2 Continuous yielding model	131
	4.8.3 Conceptual CNS shear model	132
	4.8.4 CNL direct shear model	133
	4.8.5 Discretisation of blocks and applied boundary conditions	133
	4.8.6 Results and discussions	135
	4.9 Summary of shear strength modelling	137
	References	138
5	SIMPLIFIED APPROACH FOR USING CNS TECHNIQUE IN	
,	PRACTICE	140
	5.1 Introduction	140
	5.2 Underground roadway in jointed rock	140
	5.2.1 Boundary conditions	140
	5.2.2 Roadway excavation	141
	5.3 Stability analysis of slope	143
	5.3.1 Limit equilibrium analysis (initial condition without bolts)	145
	5.3.2 CNS analysis (considering bolt contribution)	146
	5.3.3 CNL analysis considering joint contribution	147

VIII Contents

6	HIGHLIGHTS OF ROCK JOINT BEHAVIOUR UNDER CNL AND						
	CN	S CON	IDITIONS, AND RECOMMENDATIONS FOR THE FUTURE	149			
	6.1	Sumn	nary	149			
		6.1.1	Behaviour of unfilled joints under various rates of shear dis-				
			placements	150			
		6.1.2	Behaviour of unfilled joints under CNL and CNS	150			
			Shear behaviour of unfilled and natural joints under CNS	150			
		6.1.4	Behaviour of unfilled joints under CNS condition	151			
		6.1.5	New shear strength model by the authors	151			
	6.2	Reco	nmendations for further study	152			
		6.2.1	Modifications to laboratory procedures	152			
		6.2.2	Field mapping	152			
		6.2.3	Effective stress approach	152			
		6.2.4	Bolted joints	153			
		6.2.5	Scale effects	153			
		6.2.6	Extension in numerical modelling	154			
	Ref	References					
A	PPE	NDIX:	PROGRAM CODE FOR SHEAR STRENGTH MODEL	155			
SI	J BJ J	ECT II	NDEX	163			