The Windows 2000
Device Driver
Book

A GUIDE FOR
PROGRAMMERS -

Second Edition ’

Art Bake:
lerry Lozarniu

Foreword b Y AN JCO0

The #1 Windows device
driver lmuk-—!u—”}f up{inrud
for Windows 20001

Step-by-step planning,
implementation, testing,
debugging, installation,
and distribution

Complete coverage of the new
Windows Driver Model [WDM|

Prachical debugging and
inferactive troubleshooting

CDROM: Exclusive tools
tor streamlining driver

development, plus extensive
C/C++ sample driver library!

S MICROSOFT TECHNOLOGIES SERIES

Foreword xcxv
Prefacs xxvit

v ONE Introduction to Windows 2000 Drivers

Overalf System Architecture 1
Design Goals for Windows 2000 7
Hardware Privilege Levels in Windows 2000 2
Portability 3
Extendibility 3
Performance 4

Executive Components 5§
System Service Interface 5
Object Manager 5
Configuration Manager 5
Process Manager 5
Virtual Memory Manager 6
Local Procedure Call Facility 6
YO Manager 7
Active Directory Service 7
Extensions to the Base Operating System 7
The Win32 Subsystem 8
Integral Subsystems 9

KemetMode {/0 Components 10
Design Goals for the [/O Subsystem 10
Kinds of Drivers in Windows 2000 717

Speciol Driver Architectures 13
Video Drivers 14
Printer Drivers 15
Multimedia Drivers 17
Network Drivers 17

Summary 18

v TWO The Hordware Environment 20

Hardware Basics 20
Device Registers 27
Command 21
Status 21
Data 21

Accessing Device Registers 27
IO Space Registers 22
Memory-Mapped Registers 23

Device Interrupts 24
Interrupt Priority 25
Interrupt Vectors 25
Signaling Mechanisms 25
Processor Affinity 26

Data Transfer Mechanisms 26
Programmed YO 27
Direct Memory Access 27

DMA Mechanisms 28
Sysiem DMA 28
Bus Master DMA 28

Device-Dedicated Memory 28

Auto-regulation and Auto-configuration 29
Device Resource Lists 29
No Jumpers or Switches 29
Change Notification 29

Buses ond Windows 2000 30
ISA:The Industry Standard Architecture 3¢
Register Access 31
Interrupt Mechanisms 31
DMA Capabilities 31
Automatic Recognition and Configuration 33
EISA:The Extended Industry Standard Architecture 33
Regtster Access 33 '
Interrupt Mechanisms 33
DMA Capabilities 33
Device Memory 35
Automatic Recognition and Configuration 35
PCI:The Peripheral Component Interconnec 35

Register Access 37
Interrupt Mechanisms 37

DMA Capabilities 37

Device Memory 38

Awtoconfiguration 38
USB:The Universal Serial Bus 39

Register Access 39

Interrupt Mechanisms 40

DMA Capabilities 41
Auromatic Recognition and Configuration 41

IEEE 1394:The FirewireT™ Bus 47
Register Access 41
Interrupt Mechanisms 41
DMA Capabilities 41
Automatic Recognition and Configuration 41

The PC Card (PCMCIA) Bus 47
Register Access 42
Interrupt Mechanisms 42
DMA Capabilities 42 .
Automatic Recognition and Conﬁgumubn 42

Hints for Working with Hardwore 44
Learn about the Hardware 44
Bus Architeciure 44
Control Registers. 44
Ervor and Status Reporting 44
Interrupt Bebavior 45
Data Transfer Mechanisms 45
Device Memory 45
Make Use of Hardware Intelligence 45
Test the Hardware 45
Basic Tests 45
Standalong Tests 46

Summary 46

v THREE KemekMode /0 Processing 47

How KemetMode Code Exacutes 47
Trap or Exception Context 48

Interrupt Context 48
Kernel-Mode Thread Context 48

Use of Interrupt Priorities by Windows 2000 49
CPU Priority Levels 49
Interrupt Processing Sequence 50
Software-Generated Interrupts 50

Deforred Procedure Calls (DPCs) 51

Operation of aDPC 51
Behavior of DPCs 52

Accessing fo User Buffers 53
Buffer Access Mechanisms 53

Structure of a KernetMode Driver 54

Driver Initialization and Cleanup Routines 54
DriverEntry Routine 54
Retnitialization Routine 55
Unload Routine 55
Shutdown Routine 55
Bugcheck Callback Routine 55
1/0 System Service Dispatch Routines 55
Open and Close Operations 55
Device Operations 56
DataTransfer Routines 56
Start 'O Routing 56

Interrupt Service Routine (ISR) 56
DPC Routines 56

Resource Synchronization Callbacks 57
ControflerConirol Routine 57
AdapterControl Routine 58
SynchCritSecrion 58

Other Driver Routines 58

1/0 Processing Sequence 58
Preprocessing by the I/C Manager 59
Preprocessing by the Device Driver 59

Device Start and Interrupt Service 60
Start V'O 60
ISR 60

Postprocessing by the Driver 617
Postprocessing by the I/O Manager 61

Summary 62

v FOUR Drivers and Kernel-Mode Objects 63

Data Objects and Windows 2000 63
Windows 2000 and OOP 64
Windows 2000 Objects and Win32 Objects 64

1/0 Request Packets (IRPs) 64
Layout of an IRP 465
IRP Header 66

/0 Siack Locations 66

Manipulating IRPs 67
IRPs as a Whole 68
IRP Stack Locations 68
Driver Objects 68
Layout of a Driver Object 69

Davice Objects and Device Extensions 70
Layout of the Device Object 70
Manipulating Device Objects 77
Device Extensions 72

Controlfer Objects and Controfler Extensions 73
Layout of the Controller Object 73
Manipulating Controller Objects 74
Controller Extensions 74)

Adapter Objects 75
Layout of an Adapter Object 76
Manipulating Adapter Objects 77

Interrrupt Objects 77
Layout of an Interrupt Object 77

Manuipulating Interrupt Objects 78
Summary 78

v FIVE General Development lssues 79

Driver Design Strotegles 79
Use Formal Design Methods 79
Use Incremental Development 80
Examine and Use the Sample Drivers 871

Coding Conventions ond Techniques 81
General Recommendations 87
Naming Conventions &2
Header Files 83
Status Return Values 83
Windows 2000 Driver Supporit Routines 84
Discarding Initialization Routines 85
Controlling Driver Paging 86

Driver Memory Aflocation 87
Memory Avallable to Drivers 87
Working with the Kernel Stack 87 -
Working with the PoolAreas 88

System Support for Memory Suballocation 89
Zone Buffers 89
Lookastde Lists 90

Unicode Strings 91

Unicode String DataTypes 97
Working with Unicode 92

Inferrupt Synchronization 95
The Problem 95
Interrupt Blocking 96
Rules for Blocking Interrupts 96
Synchronization Using Deferred Procedure Calls 97

Synchronizing Mulfiple CPUs 97

How Spin LocksWork 98

Using Spin Locks 98

Rules for Usin&Spln Locks 99
Linked Lists 100

Singly Linked Lists 100

Doubly Linked Lists 101

Removing Blocks from a List 707

Summary 102

v SIX Initialization and Cleonup Roufines 103
Writing o Driverkntry Routine 103

Execution Context 104

What a DriverEntry Routine Does 104
Announcing DriverEntry Points 105
Creating Device Objects 105

Choosing a Buffering Strategy 107
Device Names 107

Code Exomple: Driver Initiolizotion - 108
DriverEntry 108
CreatDevice 110
Wiiting Reiniticlize Routines 111
Executive Context 111
‘What a Reinitialize Routine Does 112

Whiting and Unlood Routine 112

Execution Context 112
‘What an Unload Routine Does 1173

Code Example: Driver Unfoad 113

Wiiting Shutdown Routines 114
Execution Context 115
What a Shutdown Routine Does 115
Enabling a Shutdown Notification 7115

Testing the Driver 116
Testing Procedure 116
Visual C++ Device Driver AppWizard . 116
The WIindows 2000 DDK 117
Results of the Driver Build 7717
Installing a Kernel-Mode Driver Manually 117
Loading the Driver 118
‘Windows 2000 Computer Management Console 118
The WINOBJ Utility 119

Summary 120

v SEVEN Driver Dispatch Routines 122

Announcing Driver Dispatch Routines 122
1/0 Request Dispatching Mechanism 123
Enabling Specific Function Codes 123
Deciding Which Function Codes to Support 124

Writing Driver Dispatch Routines 125
Execution Context 726

What Dispatch Routines Do 127
Exiting the Dispatch Routine 127
Signaling an Error 127
Completing a Request 128
Scheduling a Device Operation 129
Processing Read ond Wite Requests 129

User Buffer Access 130
Buffered V'O 130
Direct YO 130
Neitber Method 131

Code Example: A Loopback Device 131

Extending the Dispatch Inferface 133
Defining Private IOCTLValues 734
IOCTL Argument-Passing Methods 134
Writing IOCTL Header Files 736
Processing IOCTL Requests 136
Managing IOCTL Buffers 138
METHOD_BUFFERED 138
MEHTOD_IN_DIRECT 138
METHOD_QUT_DIRECT 139
METHOD_NEITHER 139
Tasting Driver Dispatch Routines 139
Testing Procedure 739
Sample Test Program 140

Summary 140

v EIGHT Interrupt-Driven /0 141

How Progrommed 1/0 Works 141
What Happens During Programmed /O 142
Synchronizing Driver Routines 742
Driver Initialization and Cleanup 143
Initializing the Start 1I/O Entry Point 744
Initializing a DpcPorlsr Routine 144
Connecting to an Interrupt Source 144
Disconnecting from an Interrupt Source 146
Writing a Stort 1/0 Routine 146
Execution Context 146
‘What the Start I/O Routine Does 146
Wrifing an-tfiterrupt Service Routine (ISR) 147
Execution Context 147
What the Interrupt Service Routine Does 148
Wiiting o DpcForlsr Routing 149

Execution Context 749

What the DpcForlsr Routine Does 149
Priority Increments 7150

Some Hardware: The Parollel Port 150
How the Parallel PortWorks 750
Device Registers 757
Interrupt Behavior 752
A Loopback Connector for the Parallel Port 7153

Code Exomple: Parallel Port Loopback Driver 153
Purpose of the Driver 153
DrivetH 154

Driver.cpp 154
CreateDetice 155
DispatchWrite 156
DispaichRead 156
Stantlo 156
ISR 157
DpeForlsr 158

Testing the Paralle! Port Loopback Driver 159

Testing Procedure 159
Summary 160

v NINE Hordware Inifiolization 161

The Plug and Play Architecture: A Brief History 162
Goals of Plug and Play 162

Components of Plug and Play 763
Plug and Play Manager 163
Potwer Manager 163
Registry 163
INF Files 163 :

Plug and Play Drivers 163

The Role of the Regisiry for Legacy Drivers 164
Detecting Devices with Plug and Play 165
The Role of Driver Layers in Plug ond Ploy 166
The New WDM IRP Dispaich Functions 170

Required Plug and Play IRPs 177

PDO Plug and Play IRPs 172

Passing Down Plug and Play Requests 772

/O Completion Routines 775

Bus Driver Plug and Play Requests 178
Dovice Enumeration 178/

Hardware Resource Descriptions 179
, Using Hardware Resources within the Driver 1871

Driver Intorfoces 181
Interface Definition 182

Interface Construction 182

Interface Reference Counting 7183 ‘

Registering and Enabling an Interface 183
Code Example: A Simple Plug ond Ploy Driver 185

Summary 185

v TEIN Power Monagement 184

Hot Plug Devices 187
Bus Considerations 187
Device Considerations 187

OnNow Initiative 188
Power States 188
Power Policies 189
Power State Matrix ~ 790
Power State Changes 790
Wake Requesls 194
Canceling the Wake-Armed IRP 196

Power Management fssues 196
Idle Management 797
User Interface for Power Management 798

Summary 198

v ELEVEN Timers 199

Handling Device Timgouts 199
How I/OTimer RoutinesWork 799
How to Catch Device Timeout Conditions 200

Code Example: Catching Device Timeouts 201
Device Extension Additions 207
AddDevice Additions 202
Create Dispatch Routine Changes 202
Startlo Changes 202
ISR Changes 203
I/O Timer Callback Routine 203
Managing Devices without Interrupts 204
Working with Polled Devices 204
How CustomTimerDpc Routines Work 206
How to Set Up a CustomTimerDpc Routine 207
How to Specify Expiration Times 208
Other Uses for CustomTimerDpc Routines 270

Code Example; A TimerBased Driver 270

Device Extension Additions 27 0.
AddDevice Modifications 277

TransmitBytes Changes 277
PollingTimerDpc Routine 272

Summary 212

v TWELVE DMA Drivers 214

How DMA Works under Windows 214 ,
Hiding DMA Hardware Variations with Adapter Objects 275
The Scatter/Gather Problem 276
Memory Descriptor Lists 277

Maintaining Cache Coherency 279
CPU Data Cache 219
Adapier Object Cache 221
Packet-Based and Common Buffer DMA 227

Limitations of the Windows 2000 DMA Architecture 222

Working with Adapter Objects 222
Finding the Right Adapter Object 222
Acquiring and Releasing the Adapter Object 225
Setting Up the DMA Hardware 226
Flushing the Adapter Object Cache 227

Wiiting a Packet-Bosed Slave DMA Driver 228

How Packet-Based Slave DMA Works 228
IRP_MN_START_DEVICE Handler 228
Start YO Routtne 229
“Adapter Control Routine 229
Interrupt Service Routine 230
DpcForisr Rowtine 230

Spliting DMA Transfers 237
First Transfer 231
Additional Transfers 232

Code Example: A Packet-Based Slave DMA Driver 233
DRIVERH 233
GetDmalnfo Routine 234
Start I/O Changes 235
AdapterControl Routine 236
DpcForlsr Routine 237

Whiting o Packer-Based Bus Master DMA Driver 238
Setting Up Bus Master Hardware 239

AdapterControl Routine 239
DpcForisr Routine 241
Hardware with Scatter/Gather Support 242
Butlding Scatter/Gatber Lists with Map Transfer 243
AdapterControl Routine 243
DpcForlsr Routine 244

Wiiting o Common Buffer Slave DMA Driver 245
Allocating a Common Buffer 245

Using Common Buffer Slave DMA to Maintain Throughput 246

AddDevice Routine 247
IRP_MN_START_DEVICE Handler 247
Dispatch Routine 248

Start I/O Routine 249

Interrupt Service Routine 249
DpcForlsr Routine 249
IRP_MN_STOP_DEVICE Handler 249

Writing Common Buffer Bys Master DMA Driver 250
How Common-Buffer Bus Master DMA Works 250
IRP_MN_START_DEVICE Handler 250
Stant VO Routine 251
Interrupt Service Routine 251
IRP_MN_STOP_DEVICE Handler 251

Summary 251

v THIRTEEN Windows Manogement and InsImmentuhon
WHI: The Industry Picture 254

The WMI Architacture 255

Providing WMI Support in aWDM Driver 256

MOF Syntax 257

Example MOF Class Definition 258

Compiling the MOF Source 260

Handling WMI IRP Requests 267

Classes and Instances 262

WMILIB 263
DoWmiQueryReginfo 265
DpWmiQueryDataBlock 266
DpWmiSetDataBlock 266
DpWmiSetDataltem 266
DpWmiExecuteMethod 268
DpWmiFunctionControl 268

WM Summary 270

Conventional Driver Event logging 270
How Event Logging Works 270
Working with Messages 277
Writing a Message Definition Files 272
A Simple Example 273
Header Section 274
Message Section 274

Compiling a Message Definition File 275
Adding Message Resources to a Driver 276
Registering a Driver as an Event Source 276
Generating Log Entries 276

Allocating an Error-Log Packet 276

Logging the Error 278

Summary 279

253

v FOURTEEN System Threads 280

Definition and Use of System Threads 280
When to Use Threads 287
Creating and Terminating System Threads 282
Managing Thread Priority 282
System WorkerThreads 283

Thread Synchronization 283
Time Synchronization 284

General Synchronization 284
KeWaitForSingleObject 284
KeWaitForMultipleObjects 284

Using Dispatcher Objects 286
Event Objecis 286
Sharing Events Between Drivers 288
Mutex Objects 288
Semaphore Objects 289
Timer CObjects 290
Thread Objects 292

Variations on the Mutex 293
Fast Mutexes 293
Executive Resources 203

Synchronization Deadlocks 294

Code Example: A ThreodBased Driver 295
How the Driver Works 295
The DEVICE_EXTENSION Structure 296
The AddDevice Function 297
The DispatchReadWrite Function 298

Thread.C 299
WorkerThreadMain 299
KillTbread 300

Transfer.C 301
PerformDataTransfer 301
AcquireAdapterObfect and AdapterControl 304
PerformSynchronousTransgfer 305
DpcForlsr 306

Summery 307

v FIFTEEN Layered Drivers 308

An Overview of Intermediate Drivers 309
Intermediate Drivers Defined 309

~ When to Use a Layered Architecture 310
Pros of Layered Architecture 310
Cons of Layered Architecture 310

Wiiting Layered Drivers 311
How Layered DriversWork 311
Initialization and Cleanup in Layered Drivers 3117
DriverBntry 312
AddDevice 312
. RemoveDevice 313
Code Fragment: COnnecting to Another Driver 313
Other Initialization Concerns for Layered Drivers 314
Transparent 314
Virtual or Logical Device Layer 315
I/O Request Processing in Layered Drivers 315
Complete the Original IRP 315
Pass the IRP to Another Driver 316
Allocate Additional IRPs 317
Code Fragment: Calling a Lower-Level Driver 317

Witing /0 Completion Routines 318
Requesting an I/O Completion Callback 378 -
Execution Context 3719

What 1/0 Completion Routines De 320
Release the Original IRP 320
Deallocate the IRP 320
Recycle the IRP 320

Code Fragment:An I/O Completion Routine 237

Allocating Additional IRPs 322
The IRP’s 1/O Srtack Revisited 323
Controlling the Size of the IRP Stack 324
Creating IRPs with IoBuildSynchronousFsdRequest 325
Creating IRPs with IoBuildAsynchronousFsdRequest 327
Creating IRPs with IoBuildDevice IoControlRequest 328
Creating IRPs from Scratch 329
IRFPs from IoAlocateltb 329
IRPs from ExAllocatePool 331
IRPs from Driver-Managed Memory 332
Setting Up Buffers for Lower Drivers 332
Buffered /O Requests 332
Direct P Requests 333
Keeping Track of Driver-Allocated IRPs 333
Synchronous YO 333
Asynchronous YO . 334
Writing Filter Drivers 335
How FHilter Drivers Work 335
Initialization and Cleanup in Filter Drivers 336

AddDevice Routine 336
RemoveDevice Routine 337

Making the Attachment Transparent 337

Coda Exomple: A Filter Driver 338
The DEVICE_EXTENSION Structure 338

The DriverEntry Fuction 338

The AddDevice Function 339
GetBufferLimits 340

The OverriddenDispatchWrite Function 347
The OverriddenDispatchDeviceloControl Function 342
The DispatchPassThru Function 343
The I/0 Completion Routines 343
WriteCompletion 344
GenericCompletion 345
Wiiting Tightly Coupled Drivers 346
How Tightly Coupled Drivers Work 346
Initialization and Cleanup in Tightly Coupled
Drivers 346
Lower AddDevice Routine 346
Upper AddDevice Routine 347
Upper RemoveDevice Routine 348
Lower RemoveDevice Routine 348

Summary 349

w SIXTEEN Driver Installation 349
Instolation of a Driver 349

Auto-tnstolf Using INF Files 350
INF File Structure 350
Version Section 351
Manufacturers Section 357
Models Section 357
DDInstall Section 352
CopyfFiles Section 353
AddReg Section 354
SourceDisksNames Section 356

SourceDisksFiles Section 357
DestinationDirs Section 357
DDInstall Services Section 357
Servicelnstall Section 359
INF Example 359
Validating INF Syntax 361

Using a Driver INF File 361

Manual Installation 362

Automatic Installation 362

The Add/Remove Hardware Wizard 362

Class Names and Device IDs 36

Customizing an Instaliation 364

Controfling Driver Lood Sequence 364
Driver Stack Order 367

Digital Signing of o Driver 367
Why Microsoft Verifies Drivers 368
Digital Signatures 368

Summary 369

v SEVENTEEN Testing and Debugging Drivers 370

Guidelines for Driver Testing 371

A Generalized Approach to Testing Drivers 371
When to Test 371
What to Test 372
How to Develop the Tests 372
How to Perform the Tests 372
Who Should Perform the Tests 373

The Microsoft Hardware Compatibility Tests 373

Why Drivers Fail 374

Categories of Driver Errors 374
Hardware Probloms 374
System Crashes 374
Resource Leaks 375
Thread Hangs - 375
System Hangs 376

Reproducing Driver Errors 376
Time Dependencies 376
Multiprocessor Dependencies 377

Muitithreading Dependencies 377
Other Causes 377

Defensive Coding Strategies 377
Keeping Track of Driver Bugs 378

Reading (rash Screens 378
What Happens When the System Crashes 378
The Blue Screen of Death 379

An Overview of WinDbg 380

The Key to Source Code Debugging 387
Symbol Directories 381
Sotirce Code Directories 381

Some WinDbg Commands 387
Analyzing o Crash Dump 383

Goals of the Analysis 383

Starting the Analysis 383

Tracing the Stack 385
High IRQL Crashes 385
Crashes Below DISPATCH _LEVEL 385
Indirect Methods of Investigation 386
Finding I/O Requests 386
Examining Processes 387
Inferactive Debugging 389
Starting and Stopping a Debug Session 389
Serting Breakpoints 397
Setting Hard Breakpoints 397
Intermediate Output 392
Writing WinDbg Extensions 392
How WinDbg Extensions Work 392

Initialization and Version-Checking Functions 393
WinDbgExtensionDliInit 393
ExtenstonAptVersion 393
CheckVersion 393

Writing Extension Commands 393
WinDbg Helper Functions 394
Building and Using an Extension DLL 396

Code Example: A WinDbg Extension 396
DBG.C 396
Header 396
Globals 396
Reguired Functions 398
- Command Routines 399
Sample Outpur 400
Miscellaneous Debugging Techniques 400 _
Leaving Debugged Code in the Driver 401
Catching Incorrect Assumptions 407
Using Bugcheck Callbacks 402
Catching Memory Leaks 403
Using Counters, Bits, and Buffers . 404
Sanity Counters 404
Event Bits 404
Trace Buffers 404

Summary 406

A. The Driver Debug Environment - 407
B. Bugcheck Codes 414

C. Building Drivers 431
Bibliography 439

Index 441

