
MOMENT RESISTANT CONNECTIONS OF STEEL FRAMES IN SEISMIC AREAS

Design and Reliability

EDITED BY F.M. MAZZOLANI

LIST OF CONTENTS

ĪN	NTRODUCTORY REMARKS	x i	
	Scope	xi	
	Development of activity	xii	
	Obtained results	xviii	
1.	SEISMIC INPUT AND CODIFICATION	1	
	1.1 Analysis of design criteria and seismic hazard: comparison among codes	3	
	1.2 Influence of the type of seismic ground motions	57	
2.	DUCTILITY OF MEMBERS AND CONNECTIONS	93	
	2.1 Prediction of available ductility by means of local plastic mechanism method DUCTROT computer program	: 95	
	2.2 Plastic deformation capacity of bolted T-stubs: theoretical analysis and testing	ıg 147	
3.	CYCLIC BEHAVIOUR OF BEAM-TO-COLUMN BARE STEEL CONNECTIONS		
	3.1 Influence of strain rate	167	
	3.2 Influence of connection typology and loading asymmetry	217	
	3.3 Influence of haunching	245	
-	3.4 Influence of column size	267	
4.	CYCLIC BEHAVIOUR OF BEAM-TO-COLUMN COMPOSITE CONNECTIONS		
	4.1 Present situation	293	
	4.2 Research works from literature	295	
	4.3 Cyclic behaviour of shear connectors	299	
	4.4 Behaviour of full scale joints	313	
	4.5 Conclusions	339	
5.	RE-ELABORATION OF EXPERIMENTAL RESULTS	341	
6.	EVALUATION OF GLOBAL SEISMIC PERFORMANCE	369	
, . , .	6.1 Ductility demand for semi-rigid joint frames	371	
	6.2 Interaction between local and global properties	409	

7.	FAI	LURE MODE AND DUCTILITY DEMAND	459
	7.1	Design of semi-rigid steel frames for failure mode control	461
	7.2	Influence of connection modelling on seismic response of moment resisting steel frames	485
	7.3	Influence of the structural typology on the seismic performance of steel framed buildings	513
	7.4	Influence of building asymmetry	539
8.	. DESIGN METHODOLOGY		563
	8.1	General definitions and basic relations	565
	8.2	Energy approach	579
	8.3	The base shear force approach	597
	8.4	Comparison among methods	617
9.	. Concluding remarks		