Rob Phillips
CRYSTALS, DEFECTS
AND MICROSTRUCTURES
Modeling Across Scales

CAMBRIDGE

Contents

Pref	ace	n.	age xv
Ackr	iowledg	rements	XXI
Note	s on Un	nits, Scales and Conventions	xxiv
D			
rar	t one:	Thinking About the Material World	1
1		izing Material Response	3
1.1		terial World	3
	1.1.1	Materials: A Databook Perspective	3
	1.1.2	reperies randigin	8
	1.1.3	Controlling Structure: The World of Heat and Beat	12
1.2		ling of Materials	14
	1.2.1	· · · ·	14
	1.2.2	- S	15
	1.2.3	5	18
	1.2.4	Modeling and the Computer: Numerical Analysis vs Simulation	on 25
1.3	Furthe	er Reading	26
2	Conti	nuum Mechanics Revisited	29
2.1	Contin	nuum Mechanics as an Effective Theory	29
2.2		natics: The Geometry of Deformation	31
	2.2.1	Deformation Mappings and Strain	32
	2.2.2	Geometry of Rigid Deformation	35
	2.2.3	Geometry of Slip and Twinning	36
	2.2.4	Geometry of Structural Transformations	37
2.3	Forces	and Balance Laws	39
	2.3.1	Forces Within Continua: Stress Tensors	39
	2.3.2	Equations of Continuum Dynamics	41
	2.3.3	Configurational Forces and the Dynamics of Defects	44
2.4	Contin	nuum Descriptions of Deformation and Failure	51
	2.4.1	Constitutive Modeling	51

viii Contents

	2.4.2	Linear Floris December of Marchell	E 1
		Linear Elastic Response of Materials	51
	2.4.3	1 2 2	54
2.5	2.4.4		60
2.5		lary Value Problems and Modeling	64
	2.5.1	Principle of Minimum Potential Energy and Reciprocal	
	2.5.2	Theorem	64
	2.5.2		66
	2.5.3	<u> </u>	69
•		Numerical Solutions: Finite Element Method	72
2.6		ulties with the Continuum Approach	75
2.7		er Reading	76
2.8	Proble	ems .	78
3	Quan	tum and Statistical Mechanics Revisited	81
3.1	Backg		81
3.2	Quant	um Mechanics	82
	3.2.1	\boldsymbol{c}	82
	3.2.2	Catalog of Important Solutions	87
	3.2.3	Finite Elements and Schrödinger	94
	3.2.4	Quantum Corrals: A Finite Element Analysis	101
	3.2.5	Metals and the Electron Gas	103
	3.2.6	Quantum Mechanics of Bonding	109
3.3	Statist	ical Mechanics	113
	3.3.1	Background	11:
	3.3.2	Entropy of Mixing	119
	3.3.3	The Canonical Distribution	122
	3.3.4	Information Theoretic Approach to Statistical Mechanics	120
	3.3.5	Statistical Mechanics Models for Materials	129
	3.3.6	Bounds and Inequalities: The Bogoliubov Inequality	13:
	3.3.7	Correlation Functions: The Kinematics of Order	131
	3.3.8	Computational Statistical Mechanics	139
3.4	Furthe	er Reading	142
3.5	Proble	ems	14
Par	t two:]	Energetics of Crystalline Solids	14′
4	Energ	getic Description of Cohesion in Solids	149
4.1	•	cole of the Total Energy in Modeling Materials	14
4.2		eptual Backdrop for Characterizing the Total Energy	15:
		Atomistic and Continuum Descriptions Contrasted	15

	4.2.2 The Ma	any-Particle Hamiltonian and Degree of Freedom	
	Reducti	on	154
4.3	Pair Potentials	,	156
	4.3.1 Generic		156
		ectron Pair Potentials	158
4.4	Potentials with	Environmental and Angular Dependence	164
		stics for Evaluating Potentials	164
		nctionals	165
		r Forces: A First Look	172
4.5		Calculations of the Total Energy	176
	-	ht-Binding Method	176
		le on Periodic Solids: k-space Methods	184
	4.5.3 Real Sp	ace Tight-Binding Methods	189
4.6	First-Principles	Calculations of the Total Energy	197
	4.6.1 Managir	ng the Many-Particle Hamiltonian	198
		nergies in the Local Density Approximation	200
4.7		scription of the Total Energy: Challenges and	
	Conundrums		203
4.8	Further Reading		204
4.9	Problems		206
5	Thermal and E	lastic Properties of Crystals	210
5.1		astic Material Response	210
5.2	Mechanics of th	e Harmonic Solid	213
	5.2.1 Total En	nergy of the Thermally Fluctuating Solid	214
		Motion and Normal Modes	216
	5.2.3 Phonons	S	228
	5.2.4 Buckmin	nsterfullerene and Nanotubes: A Case Study in	
	Vibratio		229
5.3	Thermodynamic	es of Solids	231
	5.3.1 Harmon	ic Approximation	231
	5.3.2 Beyond	the Harmonic Approximation	239
5.4	Modeling the El	astic Properties of Materials	244
	5.4.1 Linear E	Elastic Moduli	244
	5.4.2 Nonlinea	ar Elastic Material Response: Cauchy-Born Elasticity	248
5.5	Further Reading		250
5.6	Problems		251
6	Structural Ener	rgies and Phase Diagrams	253
6.1	Structures in Sol		253
6.2	Atomic-Level G	eometry in Materials	254

Contents

X

6.3	Struct	ural energies of solids	260
	6.3.1	Pair Potentials and Structural Stability	261
	6.3.2		264
	6.3.3	Structural Stability Reconsidered: The Case of Elemental Si	265
6.4	Eleme	ntal Phase Diagrams	268
	6.4.1	Free Energy of the Crystalline Solid	268
	6.4.2	Free Energy of the Liquid	275
	6.4.3	Putting It All Together	277
	6.4.4	An Einstein Model for Structural Change	278
	6.4.5	A Case Study in Elemental Mg	280
6.5	Alloy	Phase Diagrams	282
	6.5.1	Constructing the Effective Energy: Cluster Expansions	283
	6.5.2		29 1
	6.5.3	The Effective Hamiltonian Revisited: Relaxations and	
		Vibrations	297
	6.5.4	The Alloy Free Energy	299
	6.5.5	Case Study: Oxygen Ordering in High T_C Superconductors	300
6.6	Summ		304
6.7	Furthe	r Reading	304
6.8	Proble	ms	305
_			
		Geometric Structures in Solids: Defects and	
Mic	rostruc	tures	309
7	Point :	Defects in Solids	31 1
7.1	Point 1	Defects and Material Response	311
	7.1.1	Material Properties Related to Point Disorder	312
7.2	Diffus	•	318
	7.2.1	Effective Theories of Diffusion	318
7.3	Geome	etries and Energies of Point Defects	32€
	7.3.1	Crystallographic Preliminaries	327
	7.3.2	A Continuum Perspective on Point Defects	328
	7.3.3	Microscopic Theories of Point Defects	332
	7.3.4	Point Defects in Si: A Case Study	341
7.4	Point 1	Defect Motions	344
	7.4.1	Material Parameters for Mass Transport	345
	7.4.2	Diffusion via Transition State Theory	346
	7.4.3	Diffusion via Molecular Dynamics	351
	7.4.4	A Case Study in Diffusion: Interstitials in Si	353
7.5		Clustering	356

7.6 7.7	Furthe Proble	er Reading ems	356 359
8	Line I	Defects in Solids	362
8.1		ment Deformation of Materials	362
	8.1.1	Yield and Hardening	363
	8.1.2		365
	8.1.3		367
8.2	The Id	leal Strength Concept and the Need for Dislocations	369
8.3		etry of Slip	371
	8.3.1	Topological Signature of Dislocations	372
	8.3.2	Crystallography of Slip	375
8.4	Elastic	Models of Single Dislocations	382
	8.4.1	The Screw Dislocation	382
	8.4.2	The Volterra Formula	388
	8.4.3	The Edge Dislocation	391
		Mixed Dislocations	392
8.5	Interac	ction Energies and Forces	393
	8.5.1	The Peach–Koehler Formula	395
	8.5.2	Interactions and Images: Peach-Koehler Applied	398
	8.5.3	The Line Tension Approximation	402
8.6	Model	ing the Dislocation Core: Beyond Linearity	404
		Dislocation Dissociation	404
	8.6.2	The Peierls-Nabarro Model	406
	8.6.3	Structural Details of the Dislocation Core	412
8.7	Three-Dimensional Dislocation Configurations		415
	8.7.1	Dislocation Bow-Out	416
	8.7.2	Kinks and Jogs	418
	8.7.3		423
	8.7.4	Dislocation Sources	426
	8.7.5	Dislocation Junctions	430
8.8		r Reading	435
8.9	Proble	ms	437
9	Wall I	Defects in Solids	441
9.1	Interfa	ces in Materials	441
	9.1.1	Interfacial Confinement	442
9.2	Free S	urfaces	446
	9.2.1	Crystallography and Energetics of Ideal Surfaces	447
	9.2.2	Reconstruction at Surfaces	452
	9.2.3	Steps on Surfaces	474

xii Contents

9.3		ng Faults and Twins	476
	9.3.1	Structure and Energetics of Stacking Faults	477
		Planar Faults and Phase Diagrams	484
9.4		Boundaries	487
		Bicrystal Geometry	489
	9.4.2		492
	9.4.3	5	494
	9.4.4	Triple Junctions of Grain Boundaries	500
9.5		Interfaces	501
9.6	Modeli	ng Interfaces: A Retrospective	502
9.7	Further	Reading	503
9.8	Proble	ms	505
10	Micros	structure and its Evolution	507
10.1	Micros	tructures in Materials	508
	10.1.1	Microstructural Taxonomy	508
	10.1.2	Microstructural Change	516
	10.1.3	Models of Microstructure and its Evolution	519
10.2	Inclusion	ons as Microstructure	520
	10.2.1	Eshelby and the Elastic Inclusion	520
	10.2.2	The Question of Equilibrium Shapes	527
	10.2.3	Precipitate Morphologies and Interfacial Energy	528
		Equilibrium Shapes: Elastic and Interfacial Energy	529
	10.2.5	A Case Study in Inclusions: Precipitate Nucleation	537
	10.2.6	Temporal Evolution of Two-Phase Microstructures	540
10.3		tructure in Martensites	546
	10.3.1	The Experimental Situation	547
	10.3.2	Geometrical and Energetic Preliminaries	551
		Twinning and Compatibility	554
	10.3.4	Fine-Phase Microstructures and Attainment	560
	10.3.5	The Austenite-Martensite Free Energy Reconsidered	565
10.4		tructural Evolution in Polycrystals	566
	10.4.1	Phenomenology of Grain Growth	567
	10.4.2	Modeling Grain Growth	568
10.5	Micros	tructure and Materials	580
10.6	Further	Reading	580
10.7	Proble	ms	582
D 1			
		Facing the Multiscale Challenge of Real Material	5 0.5
Dena	avior		585

11	Points, Lines and Walls: Defect Interactions and Material Response	587
11.1	Defect Interactions and the Complexity of Real Material Behavior	587
	Diffusion at Extended Defects	588
	11.2.1 Background on Short-Circuit Diffusion	588
	11.2.2 Diffusion at Surfaces	589
11.3	Mass Transport Assisted Deformation	592
	11.3.1 Phenomenology of Creep	593
	11.3.2 Nabarro-Herring and Coble Creep	595
11.4	Dislocations and Interfaces	599
	11.4.1 Dislocation Models of Grain Boundaries	600
	11.4.2 Dislocation Pile-Ups and Slip Transmission	604
11.5	Cracks and Dislocations	609
	11.5.1 Variation on a Theme of Irwin	610
	11.5.2 Dislocation Screening at a Crack Tip	611
	11.5.3 Dislocation Nucleation at a Crack Tip	615
11.6	Dislocations and Obstacles: Strengthening	620
	11.6.1 Conceptual Overview of the Motion of Dislocations Through	
	a Field of Obstacles	622
	11.6.2 The Force Between Dislocations and Glide Obstacles	625
	11.6.3 The Question of Statistical Superposition	628
	11.6.4 Solution Hardening	633
	11.6.5 Precipitate Hardening	636
	11.6.6 Dislocation-Dislocation Interactions and Work Hardening	642
11.7	Further Reading	644
11.8	Problems	647
12	Bridging Scales: Effective Theory Construction	649
12.1	Problems Involving Multiple Length and Time Scales	651
	12.1.1 Problems with Multiple Temporal Scales: The Example of	051
	Diffusion	652
	12.1.2 Problems with Multiple Spatial Scales: The Example of	032
	Plasticity Plastic Plant Plasticity	653
	12.1.3 Generalities on Modeling Problems Involving Multiple Scales	655
12.2	Historic Examples of Multiscale Modeling	658
12.3	Effective Theory Construction	668
	12.3.1 Degree of Freedom Selection: State Variables, Order	000
	Parameters and Configurational Coordinates	669
	12.3.2 Dynamical Evolution of Relevant Variables: Gradient Flow	00)
	Dynamics and Variational Principles	674
	12.3.3 Inhomogeneous Systems and the Role of Locality	685
	6 by status and the Role of Booting	005

	12.3.4	Models with Internal Structure	688
	12.3.5	Effective Hamiltonians	697
12.4	Bridgir	ng Scales in Microstructural Evolution	701
	12.4.1	Hierarchical Treatment of Diffusive Processes	701
	12.4.2	From Surface Diffusion to Film Growth	709
	12.4.3	Solidification Microstructures	711
	12.4.4	Two-Phase Microstructures Revisited	715
	12.4.5	A Retrospective on Modeling Microstructural Evolution	718
12.5	Bridgir	ng Scales in Plasticity	719
	12.5.1	Mesoscopic Dislocation Dynamics	720
	12.5.2	A Case Study in Dislocations and Plasticity: Nanoindentation	728
	12.5.3	A Retrospective on Modeling Plasticity Using Dislocation	
		Dynamics	731
12.6	Bridgir	ng Scales in Fracture	732
	12.6.1	Atomic-Level Bond Breaking	732
	12.6.2	Cohesive Surface Models	734
	12.6.3	Cohesive Surface Description of Crack Tip Dislocation	
		Nucleation	735
12.7	Further	r Reading	736
12.8	Proble	ms	738
13	Univer	sality and Specificity in Materials	742
13.1		als Observed	743
	13.1.1	What is a Material: Another Look	743
	13.1.2	Structural Observations	744
	13.1.3	Concluding Observations on the Observations	746
13.2		ar Have We Come?	748
	13.2.1	Universality in Materials	749
	13.2.2	Specificity in Materials	750
		The Program Criticized	751
13.3	Intrigu	ing Open Questions	752
13.4	_	ch the Author Takes His Leave	754
Refer	ences		757
Index			771