Quantitative Trait Loci Analysis in Animals

J.I. Weller

Contents

Preface, theory vs. results	Page 1
Chapter one: Historical overview	3
1.1 Introduction	3
1.2 From Mendel to Sax	3
1.3 Quantitative genetics 1920-1980, or who needs Mendel?	3 5
1.4 QTL detection 1930-1980, theory and experiments	6
1.5 From biochemistry to biotechnology, or more markers than we will ever need	7
1.6 Genetic mapping functions	9
1.7 Physical and genetic mapping, questions of scale	12
1.8 Summary	14
Chapter two: Principles of Parameter Estimation	15
2.1 Introduction	15
2.2 Desired properties of QTL parameter estimates	16
2.3 Moments method of estimation	17
2.4 Least-squares parameter estimation	17
2.5 Least-squares solutions for a single parameter	18
2.6 Least-squares solutions for the general linear model	19
2.7 Maximum likelihood estimation for a single parameter	20
2.8 Maximum likelihood multi-parameter estimation	22
2.9 Confidence intervals and hypothesis testing for MLE	23
2.10 Methods to maximize likelihood functions	24
2.11 Derivative-free methods	25
2.12 Second derivative-based methods	26
2.13 First derivative-based methods (EM)	26
2.14 Bayesian estimation	27
2.15 Minimum difference estimation	28
2.16 Summary	29
Chapter three: Random and Fixed Effects, the Mixed Model	30
3.1 Introduction	30
3.2 The mixed linear model	30
3.3 The mixed model equations	32
3.4 Solving the mixed model equations	33

vi Quantitative Trait Loci Analysis in Animals

3.5 Some important properties of mixed model solutions	34
3.6 Equation absorption	34
3.7 Multivariate mixed model analysis	35
3.8 The repeatability model	37
3.9 The individual animal model	38
3.10 Grouping individuals with unknown ancestors	39
3.11 The reduced animal model	40
3.12 Maximum likelihood estimation with mixed models	41
3.13 Estimation of variance components, analysis of variance type methods	41
3.14 Maximum likelihood estimation of variance components	42
3.15 Restricted maximum likelihood estimation of variance components	45
3.16 The problem of variance components outside the parameter space	46
3.17 Summary	47
Chapter four: Experimental Designs to Detect QTL, Generation of Linkage Disequilibrium	48
4.1 Introduction	48
4.2 Assumptions, problems and types of effects postulated	48
4.3 Experimental designs for detection of QTL in crosses between inbred lines	52
4.4 Linear model analysis of crosses between inbred lines	53
4.5 Experimental designs for detection of QTL in segregating populations - general considerations	57
4.6 Experimental designs for detection of QTL in segregating populations - large families	60
4.7 Experimental designs for detection of QTL in segregating populations - small families	63
4.8 Experimental designs based on additional generations	67
4.9 Comparison of the expected contrasts for different experimental designs	70
4.10 Gametic effect models for complete population analyses	71
4.11 Summary	73
Chapter five: QTL Parameter Estimation for Crosses between Inbred Lines	75
5.1 Introduction	75
5.2 Moments method of estimation	76
5.3 Least-squares estimation of QTL parameters	77

•	iontents vi
5.4 Least-squares estimation of QTL location for sib-pair analysis with flanking markers	81
5.5 Linear regression mapping of QTL with flanking markers	83
5.6 Marker information content for interval mapping,	85
uninformative and missing marker genotypes	00
5.7 Maximum likelihood QTL parameter estimation for crosse	s 87
between inbred lines and a single marker	<i>,</i> 3 07
5.8 Maximum likelihood tests of significance for a segregating	2 88
QTL	5 00
5.9 Maximum likelihood QTL parameter estimation for crosse	es 89
between inbred lines and two flanking markers	<i>.</i> s 0,7
_	90
5.10 Estimation of QTL parameters by the expectation-	90
maximization algorithm	92
5.11 Biases in estimation of QTL parameters with interval	92
mapping	02
5.12 The likelihood ratio test with interval mapping	93
5.13 Summary	94
Chapter six: Advanced statistical methods for QTL detection and	96
parameter estimation	30
parameter estimation	
6.1 Introduction	96
6.2 Higher order QTL effects	97
6.3 QTL interaction effects	97
6.4 Simultaneous analysis of multiple marker brackets	99
6.5 Principles of composite interval mapping	101
6.6 Properties of composite interval mapping	101
6.7 Derivation of maximum likelihood parameter estimates by	102
composite interval mapping	
6.8 Hypothesis testing with composite interval mapping	103
6.9 Multi-marker and QTL analysis by regression of phenotyp	e 104
on marker genotypes	
6.10 Estimation of QTL parameters in outbred propulations	105
6.11 Solutions for analysis of field data from segregating	107
populations	-0,
6.12 Maximum likelihood analysis of QTL parameters for the	109
daughter design with linkage to a single marker	
6.13 Maximum likelihood estimation of QTL parameters from	111
other complex pedigrees	
6.14 Non-linear regression estimation for complex pedigrees	112
6.15 Maximum likelihood estimation with random effects	114
included in the model	

viii Quantitative Trait Loci Analysis in Animals

6.16 Maximum likelihood estimation of QTL effects on	115
categorical traits	117
6.17 Estimation of QTL effects with the threshold model	118
6.18 Estimation of QTL effects on disease traits by the allele- sharing method	
6.19 Summary	119
Chapter seven: Analysis of QTL as Random Effects	120
7.1 Introduction	120
7.2 ML estimation of variance components for the Haseman-	121
Elston sib-pair model	
7.3 The random gametic model of Fernando and Grossman, computing G _v	123
7.4 Computing the inverse of G _v	125
7.5 Analysis of the random gametic model by a reduced animal model (RAM)	126
7.6 Analysis of the random gametic QTL model with multiple QTL and marker brackets.	128
7.7 Computation of the gametic effects variance matrix	129
7.8 The gametic effect model for crosses between inbred lines	131
7.9 REML estimation of the QTL variance and recombination	132
for the model of Fernando and Grossman	
7.10 REML estimation of the QTL variance and location with marker brackets	133
7.11 Bayesian estimation of QTL effects, determining the prior distribution	134
7.12 Formula for Bayesian estimation and tests of significance	138
of a segregating QTL in a simulated grand-daughter design 7.13 Comparison of ML and Bayesian analyses of a simulated grand-daughter design	139
7.14 Markov Chain Monte Carlo algorithms, Gibbs' sampling	140
7.15 Summary	141
Chapter eight: Statistical Power to Detect QTL, and Parameter Confidence Intervals	142
8.1 Introduction	142
8.2 Estimation of power in crosses between inbred lines	143
8.3 Replicate progeny in crosses between inbred lines	144
8.4 Estimation of power for segregating populations	146
8.5 Power estimates for likelihood ratio tests - general considerations	150

8.6 The effect of statistical methodology on the power of QTL detection	150
8.7 Estimation of power with random QTL models	151
8.8 Confidence intervals for QTL parameters - analytical methods	152
8.9 Simulation studies of confidence intervals	153
8.10 Empirical methods to estimate CI, parametric and non-	154
parametric bootstrap and jackknife methods	154
8.11 Summary	156
6.11 Sulliliary	150
Chapter nine: Optimization of Experimental Designs	157
9.1 Introduction	157
9.2 Economic optimization of marker spacing when the number	157
of individuals genotyped is non-limiting	
9.3 Economic optimization with replicate progeny	158
9.4 Selective genotyping	160
9.5 Sample pooling - general considerations	163
9.6 Estimation of power with sample pooling	163
9.7 Comparison of power and sample sizes with random	166
genotyping, selective genotyping, and sample pooling	
9.8 Sequential sampling	167
9.9 Summary	168
Chapter ten: Fine Mapping of QTL	169
10.1 Introduction	169
10.2 Determination of the genetic map critical interval for a	169
marker locus with a saturated genetic marker map	
10.3 Confidence interval for QTL location with a saturated genetic	171
marker map	172
10.4 Fine mapping of QTL via advanced intercross lines	172
10.5 Selective phenotyping	173
10.6 Recombinant progeny testing	174
10.7 Interval specific congenic strains	174
10.8 Recombinant inbred segregation test	176
10.9 Fine mapping of QTL in outcrossing populations by identity	176
by descent	
10.10 Summary	177
Chapter eleven: Complete Genome QTL Scaps - the Problem of Multiple Comparisons	178
11.1 Introduction	178
11.2 Multiple markers and whole genome scans	179

x Quantitative Trait Loci Analysis in Animals

11.3 QTL detection by permutation tests	181
11.4 QTL detection based on the false discovery rate	181
11.5 A priori determination of the proportion of false positives	185
11.6 Analysis of multiple pedigrees	186
11.7 Biases with estimation of multiple QTL	188
11.8 Summary	189
Chapter twelve: Multiple Trait QTL analysis	190
12.1 Introduction	190
12.2 Problems and solutions for multiple trait QTL analyses	190
12.3 Multivariate estimation of QTL parameters for correlated traits	191
12.4 Comparison of power for single and multitrait QTL analyses	193
12.5 Pleiotropy vs. linkage	196
12.6 Estimation of QTL parameters for correlated traits by canonical transformation	197
12.7 Determination of statistical significance for multitrait	199
analyses	200
12.8 Selective genotyping with multiple traits	200
12.9 Summary	203
Chapter thirteen: Principles of Selection Index and Traditional	205
Breeding Programmes	
13.1 Introduction	205
13.2 Selection index for a single trait	205
13.3 Changes in QTL allelic frequencies due to selection	207
13.4 Multitrait selection index	208
13.5 The value of genetic gain	209
13.6 Dairy cattle breeding programmes, half-sib and progeny tests	211
13.7 Nucleus breeding schemes	214
13.8 Summary	215
Chapter fourteen: Marker-assisted Selection - Theory	217
14.1 Introduction	217
14.2 Situations in which selection index is inefficient	217
14.3 Potential contribution of MAS for selection within a breed - general considerations	218
14.4 Phenotypic selection vs. MAS for individual selection	219
14.5 MAS for sex-limited traits	220

	Contents x
14.6 Two-stage selection: MAS on juveniles, and phenotypic selection of adults	221
14.7 MAS including marker and phenotypic information on relatives	222
14.8 Maximum selection efficiency of MAS with all QTL know relative to trait-based selection, and the reduction in RSE due to sampling variance	
14.9 Marker information in segregating populations	224
14.10 Inclusion of marker information in "animal model" genetic evaluations	225
14.11 Velogenetics - the synergistic use of MAS and germ-lin- manipulation	e 225
14.12 Summary	226
Chapter fifteen: Marker-assisted Selection - Results of Simulation Studies	227
15.1 Introduction	227
15.2. Modeling the polygenic variance	227
15.3 The effective number of QTL	229
15.4 Proposed dairy cattle breeding schemes with MAS – overview	230
15.5 Inclusion of marker information into standard progeny test and MOET nucleus breeding schemes	230
15.6 Progeny test schemes, in which information on genetic markers is used to preselect young sires	232
15.7 Selection of sires based on marker information without a progeny test	234
15.8 Long-term considerations, MAS vs. selection index	235
15.9 MAS for a multitrait breeding objective with a single identified QTL	238
15.10 MAS for a multitrait breeding objective with multiple identified QTL	241
15.11 Summary	241
Chapter sixteen: Marker-assisted Introgression	243
16.1 Introduction	243
16.2 Marker-assisted introgression - general considerations	245
16.3 Marker-assisted introgression of a major gene into an inbre line	
16.4 Marker-assisted introgression of a QTL into a donor population under selection	247
16.5 Marker-assisted introgression for multiple genes	248

xii Quantitative Trait Loci Analysis in Animals

16.6 Summary	249
Glossary of commonly used symbols	250
Latin symbols	250
Greek symbols	258
Other symbols	260
References	261
Author index	274
Subject index	277