


## **Contents**

| Preface to the second edition                    | <i>page</i> xi |
|--------------------------------------------------|----------------|
| 1 Introduction                                   | 1              |
| 1.1 What is genetic engineering?                 | 1              |
| 1.2 Laying the foundations                       | 3              |
| 1.3 First steps                                  | . 4            |
| 1.4 What is in store?                            | 6              |
| Part I: The basis of genetic engineering         | 9              |
| 2 Introducing molecular biology                  | 11             |
| 2.1 The flow of genetic information              | 11             |
| 2.2 The structure of DNA and RNA                 | 13             |
| 2.3 Gene organisation                            | 16             |
| 2.3.1 Gene structure in prokaryotes              | 18             |
| 2.3.2 Gene structure in eukaryotes               | 19             |
| 2.4 Gene expression                              | 21             |
| 2.5 Genes and genomes                            | 23             |
| 2.5.1 Genome size and complexity                 | 23             |
| 2.5.2 Genome organisation                        | 24             |
| 3 Working with nucleic acids                     | 27             |
| 3.1 Isolation of DNA and RNA                     | 27             |
| 3.2 Handling and quantification of nucleic acids | 29             |
| 3.3 Radiolabelling of nucleic acids              | 30             |
| 3.3.1 End labelling                              | . 30           |
| 3.3.2 Nick translation                           | 31             |

|          | 3.3.3 Labelling by primer extension                    | 31 |
|----------|--------------------------------------------------------|----|
| 3        | 3.4 Nucleic acid hybridisation                         | 33 |
| 3.1      | 3.5 Gel electrophoresis                                | 33 |
| 3        | 3.6 DNA sequencing                                     | 35 |
|          | 3.6.1 Maxam—Gilbert (chemical) sequencing              | 37 |
| •        | 3.6.2 Sanger–Coulson (dideoxy or enzymatic) sequencing | 37 |
|          | 3.6.3 Electrophoresis and reading of sequences         | 40 |
| 4 Th     | e tools of the trade                                   | 43 |
| 4        | 1.1 Restriction enzymes – cutting DNA                  | 43 |
|          | 4.1.1 Type II restriction endonucleases                | 44 |
|          | 4.1.2 Use of restriction endonucleases                 | 45 |
|          | 4.1.3 Restriction mapping                              | 47 |
| 4        | 4.2 DNA modifying enzymes                              | 48 |
|          | 4,2.1 Nucleases                                        | 48 |
|          | 4.2.2 Polymerases                                      | 49 |
|          | 4.2.3 Enzymes that modify the ends of DNA molecules    | 51 |
| 4        | 4.3 DNA ligase – joining DNA molecules                 | 52 |
| Part II: | The methodology of gene manipulation                   | 55 |
| 5 Hc     | ost cells and vectors                                  | 57 |
|          | 5.1 Host cell types                                    | 58 |
|          | 5.1.1 Prokaryotic hosts                                | 58 |
|          | 5.1.2 Eukaryotic bosts                                 | 59 |
|          | 5.2 Plasmid vectors for use in E. coli                 | 60 |
|          | 5.2.1 What are plasmids?                               | 61 |
|          | 5.2.2 Basic cloning plasmids                           | 61 |
|          | 5.2.3 Slightly more exotic plasmid vectors             | 63 |
|          | 5.3 Bacteriophage vectors for use in E. coli           | 66 |
|          | 5.3.1 What are bacteriophages?                         | 66 |
|          | 5.3.2 Vectors based on bacteriophage $\lambda$         | 70 |
|          | 5.3.3 Vectors based on bacteriophage M13               | 74 |
|          | 5.4 Other vectors                                      | 75 |
|          | 5.4.1 Hybrid plasmid/phage vectors                     | 76 |
|          | 5.4.2 Vectors for use in eukaryotic cells              | 77 |
|          | 5.4.3 Artificial chromosomes                           | 79 |
|          | 5.5 Getting DNA into cells                             | 80 |
|          | 5.5.1 Transformation and transfection                  | 80 |
|          | 5.5.2 Packaging phage DNA in vitro                     | 81 |
|          | 5.5.3 Alternative DNA delivery methods                 | 83 |

|   |       |                                                           | Contents | vii |
|---|-------|-----------------------------------------------------------|----------|-----|
| 6 | Clon  | ing strategies                                            |          | 87  |
| _ |       | Which approach is best?                                   |          | 87  |
|   |       | Cloning from mRNA                                         |          | 89  |
|   |       | 6.2.1 Synthesis of cDNA                                   |          | 90  |
|   |       | 6.2.2 Cloning cDNA in plasmid vectors                     |          | 93  |
|   |       | 6.2.3 Cloning cDNA in bacteriophage vectors               |          | 96  |
|   | 6.3   | Cloning from genomic DNA                                  |          | 98  |
|   |       | 6.3.1 Genomic libraries                                   |          | 99  |
|   |       | 6.3.2 Preparation of DNA fragments for cloning            |          | 101 |
|   |       | 6.3.3 Ligation, packaging and amplification of libraries  |          | 103 |
|   | 6.4   | Advanced cloning strategies                               |          | 106 |
|   |       | 6.4.1 Synthesis and cloning of cDNA                       |          | 106 |
|   |       | 6.4.2 Expression of cloned cDNA molecules                 |          | 109 |
|   |       | 6.4.3 Cloning large DNA fragments in BAC and YAC vectors  |          | 111 |
| 7 | The p | polymerase chain reaction                                 |          | 115 |
|   | 7.1   | The (short) history of the PCR                            |          | 115 |
|   | 7.2   | The methodology of the PCR                                |          | 118 |
|   |       | 7.2.1 The essential features of the PCR                   |          | 118 |
|   |       | 7.2.2 The design of primers for PCR                       |          | 121 |
|   |       | 7.2.3 DNA polymerases for PCR                             |          | 121 |
|   | 7.3   | More exotic PCR techniques                                |          | 123 |
|   |       | 7.3.1 PCR using mRNA templates                            |          | 123 |
|   |       | 7.3.2 Nested PCR                                          |          | 124 |
|   |       | 7.3.3 Inverse PCR                                         |          | 126 |
|   |       | 7.3.4 RAPD and several other acronyms                     |          | 127 |
|   | 7.4   | Processing of PCR products                                |          | 129 |
|   | 7.5   | Applications of the PCR                                   |          | 130 |
| 8 | Selec | tion, screening and analysis of recombinants              |          | 132 |
|   | 8.1   | Genetic selection and screening methods                   |          | 133 |
|   |       | 8.1.1 The use of chromogenic substrates                   |          | 133 |
|   |       | 8.1.2 Insertional inactivation                            |          | 135 |
|   |       | 8.1.3 Complementation of defined mutations                |          | 136 |
|   |       | 8.1.4 Other genetic selection methods                     |          | 137 |
|   | 8.2   | Screening using nucleic acid hybridisation                |          | 138 |
|   |       | 8.2.1 Nucleic acid probes                                 |          | 138 |
|   |       | 8.2.2 Screening clone banks                               |          | 139 |
|   | 8.3   | Immunological screening for expressed genes               |          | 141 |
|   | 8.4   | Analysis of cloned genes                                  |          | 143 |
|   |       | 8.4.1 Characterisation based on mRNA translation in vitro |          | 143 |

|           | 8.4.2 Restriction mapping                                | 145 |
|-----------|----------------------------------------------------------|-----|
|           | 8.4.3 Blotting techniques                                | 145 |
|           | 8.4.4 DNA sequencing                                     | 148 |
| Part III: | Genetic engineering in action                            | 151 |
| 9 Und     | lerstanding genes and genomes                            | 153 |
| 9.        | 1 Analysis of gene structure and function                | 153 |
|           | 9.1.1 A closer look at sequences                         | 154 |
|           | 9.1.2 Finding important regions of genes                 | 155 |
|           | 9.1.3 Investigating gene expression                      | 157 |
| 9.        | 2 From genes to genomes                                  | 159 |
|           | 9.2.1 Analysing genomes                                  | 160 |
|           | 9.2.2 Mapping genomes                                    | 161 |
| 9.        | 3 Genome sequencing                                      | 165 |
|           | 9.3.1 Sequencing technology                              | 165 |
|           | 9.3.2 Genome projects                                    | 165 |
| 9.        | 4 The human genome project                               | 167 |
|           | 9.4.1 Whose genome, and how many genes does it contain?  | 169 |
|           | 9.4.2 Genetic and physical maps of the human genome      | 170 |
|           | 9.4.3 Deriving and assembling the sequence               | 174 |
|           | 9.4.4 What next?                                         | 175 |
| 10 Gei    | netic engineering and biotechnology                      | 178 |
| 10        | 0.1 Making proteins                                      | 179 |
|           | 10.1.1 Native and fusion proteins                        | 179 |
|           | 10.1.2 Yeast expression systems                          | 181 |
|           | 10.1.3 The baculovirus expression system                 | 182 |
|           | 10.1.4 Mammalian cell lines                              | 183 |
|           | 0.2 Protein engineering                                  | 183 |
| 1         | 0.3 Examples of biotechnological applications of rDNA    |     |
|           | technology                                               | 185 |
|           | 10.3.1 Production of enzymes                             | 18. |
|           | 10.3.2 The BST story                                     | 187 |
|           | 10.3.3 Therapeutic products for use in human health-care | 190 |
| 11 Me     | edical and forensic applications of gene manipulation    | 197 |
| 1         | 1.1 Diagnosis and characterisation of medical conditions | 197 |
|           | 11.1.1 Diagnosis of infection                            | 198 |
|           | 11.1.2 Patterns of inheritance                           | 198 |
|           | 11.1.3 Genetically based disease conditions              | 201 |

|                                                             | Contents | ix  |
|-------------------------------------------------------------|----------|-----|
| 11.2 Treatment using rDNA technology - gene therapy         |          | 210 |
| 11.2.1 Getting transgenes into patients                     |          | 211 |
| 11.2.2 Gene therapy for adenosine deaminase deficiency      |          | 214 |
| 11.2.3 Gene therapy for cystic fibrosis                     |          | 214 |
| 11.3 DNA profiling                                          |          | 215 |
| 11.3.1 The history of 'genetic fingerprinting'              |          | 216 |
| 11.3.2 DNA profiling and the law                            |          | 218 |
| 11.3.3 Mysteries of the past revealed by genetic detectives |          | 219 |
| 12 Transgenic plants and animals                            |          | 224 |
| 12.1 Transgenic plants                                      |          | 224 |
| 12.1.1 Why transgenic plants?                               |          | 225 |
| 12.1.2 Ti plasmids as vectors for plant cells               |          | 226 |
| 12.1.3 Making transgenic plants                             |          | 228 |
| 12.1.4 Putting the technology to work                       |          | 230 |
| 12.2 Transgenic animals                                     |          | 237 |
| 12.2.1 Why transgenic animals?                              |          | 237 |
| 12.2.2 Producing transgenic animals                         |          | 238 |
| 12.2.3 Applications of transgenic animal technology         |          | 241 |
| 13 The other sort of cloning                                |          | 247 |
| 13.1 Early thoughts and experiments                         |          | 247 |
| 13.1.1 First steps towards cloning                          |          | 249 |
| 13.1.2 Nuclear totipotency                                  |          | 250 |
| 13.2 Frogs and toads and carrots                            |          | 250 |
| 13.3 A famous sheep - the breakthrough achieved             |          | 253 |
| 13.4 Beyond Dolly                                           |          | 256 |
| 14 Brave new world or genetic nightmare?                    |          | 259 |
| 14.1 Is science ethically and morally neutral?              |          | 259 |
| 14.2 Elements of the ethics debate                          |          | 260 |
| 14.1 Does Frankenstein's monster live inside Pandora's bo   | ex?      | 262 |
| Suggestions for further reading                             |          | 263 |
| Using the World Wide Web                                    |          | 266 |
| Glossary                                                    |          | 270 |
| Index                                                       |          | 287 |