

The Elements of Physical Chemistry

CONTENTS

1.14 The liquefaction of gases

Intro	oduction	1	Chap	oter 2 Thermodynamics: the First Law	.3
0.1	The states of matter	. 2	**********		
0.2	Physical state	2	The	conservation of energy	3
0.3	Pressure	3	2.1	Systems and surroundings	3
0.4	Temperature	6 .	2.2	Work and heat	3
0.5	Amount of substance	7	2.3	The measurement of work	4
			2.4	The measurement of heat	4
Chap	oter 1 The properties of gases	11			
************		***************************************		rnal energy and enthalpy	4
Equa	tions of state	11		The internal energy	4
1.1	The perfect gas equation of state	12	2.6	The enthalpy	4
	Box 1.1 The gas laws and the weather	15	2.7	The temperature variation of the enthalpy	5
1.2	Using the perfect gas law	17			
1.3	Mixtures of gases: partial pressures	18	Chap	pter 3 Thermochemistry	5
The l	kinetic model of gases	20	Phys	sical change	5
1.4	The pressure of a gas according to the kinetic model	20	3.1 3.2	The enthalpy of phase transition Atomic and molecular change	5
1.5	The average speed of gas molecules	21	3.2	Atomic and molecular change	ь
1.6	The Maxwell distribution of speeds	22	Cher	nical change	6
1.7	Diffusion and effusion	23		•	-
1.8	Molecular collisions	25	3.3	Standard enthalpy changes The combination of reaction enthalpies	6
	Box 1.2 The Sun as a ball of perfect gas	27	3.4	Standard enthalpies of formation	6
			3.5	Box 3.1 Food and energy reserves	5
Real	gases	27	3.6	The variation of reaction enthalpy with	•
1.9	Intermolecular interactions	28	3.0	temperature	7
1.10	The critical temperature	28			
1.11	The compression factor	30	Char	oter 4 Thermodynamics: the	
1.12	The virial equation of state	31		ond Law	7
1.13	The van der Waals equation of state	31			

33

viii CONTENTS

Entropy		78	6.5	Ideal-dilute solutions Box 6.1 Gas solubility and breathing	120 122
4.1	The direction of spontaneous change	78	6.6	Real solutions: activities	124
4.2	Entropy and the Second Law	79	0.0	Redi Solutions, activities	124
4.3	Entropy changes for typical processes	80	Collid	gative properties	125
4.4	Entropy changes in the surroundings	84	_	The modification of boiling and	
4.5	Absolute entropies and the Third Law of		6.7	freezing points	125
	thermodynamics	85	6.8	Osmosis	127
4.6	The standard reaction entropy	88		Box 6.2 Dialysis and protein binding	128
4.7	The spontaneity of chemical reactions	88	411111441111		
	Box 4.1 The hydrophobic effect	89	Phas	e diagrams of mixtures	132
The /	Gibbs energy	90	6.9	Mixtures of volatile liquids	132
ine (6.10	Liquid-liquid phase diagrams	135
4.8	Focusing on the system	90	6.11	Liquid-solid phase diagrams	137
4.9	Properties of the Gibbs energy	90	6.12	Ultrapurity and controlled impurity	139
Chap	oter 5 Phase equilibria: pure		Char	to 7 Dringinles of chamical	
substances		95		pter 7 Principles of chemical i llibrium	
The thermodynamics of transition		95 Th	The	modynamic background	143
5.1	The condition of stability	95	7.1	The reaction Gibbs energy	144
5.2	The variation of Gibbs energy with		7.2	The variation of $\Delta_r G$ with composition	146
	pressure	96	7.3	Reactions at equilibrium	147
5.3	The variation of Gibbs energy with temperature	97	7.4	The standard reaction Gibbs energy	149
	temperature	3.	7.5	Coupled reactions	152
Pha	se diagrams	99	7.5	Box 7.1 Anaerobic and aerobic metabolism	154
	Phase boundaries	99	7.6	The equilibrium composition	154
5.4	The location of phase boundaries	101		Box 7.2 Myoglobin and haemoglobin	156
5.5	Characteristic points	103			
5.6	The phase rule	105	The	response of equilibria to the conditions	158
5.7	Phase diagrams of typical materials	106	7.7	The presence of a catalyst	158
5.8	Phase diagrams of typical materials	100	7.8	The effect of temperature	158
Cha	pter 6 The properties of mixtures	111	7.9	The effect of compression	160
, TL -	thermodynamic description of mixtures	111	Cha	apter 8 Consequences of equilibrium	167
				•	.,
6.1	Measures of concentration	112	Pro	ton transfer equilibria	167
6.2	• •	113	8.1		168
6.3	•	116	8.2		168
6.4	ideal solutions	117	Ţ. <u>.</u>	•	

253

	- •				
8.3	Polyprotic acids	172	Empi	rical chemical kinetics	216
8.4	Amphiprotic systems	175	10.1	Experimental techniques	216
Salts	in water	176	10.2	Application of the techniques	216
	Acid-base titrations	176		Box 10.1 Ultrafast reactions: femtochemistry	218
8.6	Buffer action	179			
8.7	Indicators	180	Reac	tion rates	219
•		100	10.3	The definition of rate	219
Solut	bility equilibria	182	10.4	Rate laws and rate constants	220
8.8	The solubility constant	182	10.5	Reaction order	220
	The common-ion effect	182	10.6	The determination of the rate law	22
0.12		.02	10.7	Integrated rate laws	22
Classic	Loo O. El catacada contata con		10.8	Half-lives	22
Cnap	oter 9 Electrochemistry	187			
Tha #	niguration of long	***************************************		emperature dependence of reaction	
	nigration of ions	188	rates		22:
9.1	Conductivity	188		The Arrhenius parameters	22
9.2	ion mobility	190		Collision theory	23
				Activated complex theory	23
Flect	rochemical cells	192	10.12	Catalysis	23
9.3	Half-reactions and electrodes	193			
9.4	Reactions at electrodes	194	Char	oter 11 Accounting for the rate laws	24
9.5	Varieties of cell	197	Cinap	ter it recounting for the fact lates	
	Box 9.1 Action potentials	198	Reac	tion schemes	24
9.6	The cell reaction	199			
9.7	The cell potential	199	11.1	The approach to equilibrium	24
	Box 9.2 Chemisosmotic theory	201	11.2	Consecutive reactions	24
9.8	Cells at equilibrium	202	Pose	tion mechanisms	24
9.9	Standard potentials	203			
	The variation of potential with pH	205	11.3	•	24
9.11	The determination of pH	206		The formulation of rate laws	24
	Bentlane of standard actoutists		11.5	The steady-state approximation	24
	lications of standard potentials	207	11.6	The rate-determining step	24
9.12	The electrochemical series	207	11.7	Reactions on surfaces	24
	Box 9.3 Cytochrome cascades	208	11.8	Unimolecular reactions	25
9.13	The determination of thermodynamic functions	209		was reactions	
			_	me reactions	25
-1			11.9	The mechanism of enzyme action	25
Char	oter 10. The rates of reactions	215		Box 11.1 Catalytic action and catalytic	

antibodies

X CONTENTS

11.10	Enzyme inhibition	256 13.2	The permitted energies of hydrogenic atoms	29
Chair	reactions	 259 13.3	Quantum numbers	30
	The structure of chain reactions	13.4	The wavefunctions: s orbitals	3
	The rate laws of chain reactions	259 13.5	The wavefunctions: p and d orbitals	3
		13.6	Electron spin	3
11.13	Explosions	261 13.7	Spectral transitions and selection rules	3
Phot	ochemical processes	262		
11.14	Quantum yield	²⁶² The	structures of many-electron atoms	3
	Box 11.2 Photobiology	264	<u>-</u>	
11.15	Photochemical rate laws	266	The David principle	3
	•	13.9	The Pauli principle	3
			Penetration and shielding	
Chap	ter 12 Quantum theory	269	The building-up principle	:
			The occupation of <i>d</i> orbitals	
The f	ailures of classical physics	270 13.1	The configurations of cations and anions	,
12.1	Black-body radiation	270 Per	iodic trends in atomic properties	
12.2	Heat capacities	273	• •	
12.3	The photoelectric effect	275	Atomic radius Box 13.1 Atomic radius and respiration	
12.4	The diffraction of electrons	277	·	:
12,5	Atomic and molecular spectra	278	5 Ionization energy and electron affinity	
The c	lynamics of microscopic systems	The	spectra of complex atoms	:
		13.1	Term symbols	
12.6	The Schrödinger equation	280 13.1	7 Spin-orbit coupling	
12.7	The Born interpretation	281		
12.8	The uncertainty principle	282 Cha	pter 14 The chemical bond	3
Appl	ications of quantum mechanics	285		
12.9	Translation: a particle in a box	285 int i	oductory concepts	;
12.10	Rotation: a particle on a ring	₂₈₇ 14.1	The classification of bonds	:
12.11	Vibration: the harmonic oscillator	₂₉₀ 14.2	Potential energy curves	3
	Box 12.1 Scanning tunnelling microscopy	292	tJah	
		Val	ence bond theory	3
Chap	oter 13 Atomic structure	297 ^{14.3}		
***************************************		14.4	•	:
Hydr	ogenic atoms	298 14.5	•	
13.1	The spectra of hydrogenic atoms	298 14.6	Resonance	

Mole	cular orbitals	333	Chap	eter 16 Molecular substances	381
14.7	Linear combinations of atomic orbitals	334	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
14.8	Bonding orbitals	335	The c	origins of cohesion	381
14.9	Antibonding orbitals	335	16.1	Interactions between partial charges	382
14.10	The structures of diatomic molecules	336	16.2	Electric dipole moments	382
14.11	Hydrogen and helium molecules	336	16.3	Interactions between dipoles	386
14.12	Period 2 diatomic molecules	338	16.4	Induced dipole moments	388
14.13	Symmetry and overlap	340	16.5	Dispersion interactions	389
14.14	The electronic structures of homonuclear diatomic molecules	343	16.6	Hydrogen bonding	389
14.15	Parity	344	16.7	The total interaction	391
14.16	Heteronuclear diatomic molecules	345	Pion	aluman	
14.17	Polar covalent bonds	346	ыор	olymers	394
	Box 14.1 Computational chemistry	348	16.8	Polypeptide structures	394
14.18	The structures of polyatomic molecules	349	16.9	Denaturation	395
Chapter 15 Matellia and include			Liqui	ids	396
Chap	eter 15 Metallic and ionic solids	355		Box 16.1 The prediction of protein structure	397
Pond	ling in solids	356	16.10	The relative positions of molecules	398
	•		16.11	Molecular motion in liquids	399
15.1	The band theory of solids	357	*************		
15.2	The occupation of bands	358	Mes	ophases and disperse systems	403
15.3	The ionic model of bonding	360	16.12	Liquid crystals	403
15.4	Lattice enthalpy	360	16.13	Classification of disperse systems	404
15.5	Coulombic contributions to lattice enthalpies	362	16.14	Surface, structure, and stability	405
	endialpies	302	16.15	The electric double layer	407
Cryst	tal structure	364		Box 16.2 Cell membranes	408
15.6	Unit cells	364			
15.7	The identification of crystal planes	365	Cha	oter 17 Molecular rotations and	
15.8	The determination of structure	369		ations	415
15.9	The Bragg law	371	************		
15.10	Experimental techniques	371	Gene	eral features of spectroscopy	416
····			17.1	Experimental techniques	417
Typic	cal structures	373	17.2	Intensities and linewidths	418
15.11	Metal crystals	374			
15.12	ionic crystals	376	Rota	tional spectroscopy	420
			17.3	The rotational energy levels of molecules	420

XII CONTENTS

	- · · · · · · · · · · · · · · · · · · ·			·	
17.4	Rotational transitions: microwave spectroscopy	422	19.4	The fine structure	464
17.5	Rotational Raman spectra			Box 19.1 Magnetic resonance imaging	466
17.3	Rotational Raman spectra	424	19.5	Spin relaxation	468
Vibra	ational spectroscopy	424	19.6	The nuclear Overhauser effect	470
17.6	The vibrations of molecules	425			
17.7	Vibrational transitions	426	Chap	oter 20 Statistical thermodynamics	475
17.8	Vibrational Raman spectra of diatomic	0	•		
	molecules	428	The	partition function	476
17.9	The vibrations of polyatomic molecules	428	20.1	The Boltzmann distribution	476
17.10	Vibrational Raman spectra of polyatomic		20.2	The interpretation of the partition function	478
	molecules	431	20.3	Examples of partition functions	481
C)		-			
Chap	oter 18 Electronic transitions	437	Ther	modynamic properties	482
I Iléan	violet and visible spectra		20,4	The internal energy and the heat capacity	483
	•	438	20.5	The entropy and the Gibbs energy	484
18.1	The Franck-Condon principle	439	20.6	The statistical basis of equilibrium	487
18.2	Measures of Intensity	440		Box 20.1 The helix-coil transition in	
18.3	Circular dichroism	443		polypeptides	489
18.4	Specific types of transitions	444			
	Box 18.1 The photochemistry of vision	446	Furt	her information	493
Radia	ative decay	447			
18.5	Fluorescence	448	1 M	athematical techniques	493
18.6	Fluorescence quenching	449	1.1	Algebraic equations and graphs	493
18.7	Phosphorescence	451	1.2	Logarithms, exponentials, and powers	494
18.8	Lasers	453	1.3	Differentiation and Integration	495
Phot	oelectron spectroscopy	454	2 Qı	uantities and units	498
Chap	oter 19 Magnetic resonance	459	3 En	ergy and force	500
Princ	iples of magnetic resonance		4 Th	e kinetic theory of gases	501
	•	460			
19.1	Nuclei in magnetic fields The technique			e variation of Glbbs energy with the	
13.4	rne technique	461	co	nditions	502
The i	nformation in NMR spectra	462	6 Ca	ncepts of electrostatics	503
19.3	The chemical shift	462			J.U.J

•		•	
7 Electromagnetic radiation and photons	505	1.2 Thermodynamic data	515
8 Oxidation numbers	507	2 Standard potentials	522
o Oxidation numbers	307	2.1a Standard potentials in electrochemical order	522
9 The Lewis theory of covalent bonding	509	2.16 Standard potentials in alphabetical order	523
10 The VSEPR model	511	3 The amino acids	525
Appendices	514	Answers to exercises	526
1 Thermodynamic data	514	index	533
1.1 Thermodynamic data for organic			

514

compounds

CONTENTS XIII