





## MOLECULAR MODELLING

PRINCIPLES AND APPLICATIONS

Andrew R. Leach





SECOND EDITION





## **Contents**

| Pro | Preface to the Second Edition                      |                                                                    | xiii |
|-----|----------------------------------------------------|--------------------------------------------------------------------|------|
| Pro | eface to                                           | the First Edition                                                  | xv   |
| Sy  | mbols a                                            | and Physical Constants                                             | xvii |
| Ac  | Acknowledgements                                   |                                                                    |      |
| 1   | Usefu                                              | ıl Concepts in Molecular Modelling                                 | 1    |
|     | 1.1                                                | Introduction                                                       | 1    |
|     | 1.2                                                | Coordinate Systems                                                 | 2    |
|     | 1.3                                                | Potential Energy Surfaces                                          | 4    |
|     | 1.4                                                | Molecular Graphics                                                 | 5    |
|     | 1.5                                                | Surfaces                                                           | 6    |
|     | 1.6                                                | Computer Hardware and Software                                     | 8    |
|     | 1.7                                                | Units of Length and Energy                                         | 9    |
|     | 1.8                                                | The Molecular Modelling Literature                                 | 9    |
|     | 1.9                                                | The Internet                                                       | 9    |
|     |                                                    | Mathematical Concepts                                              | 10   |
|     |                                                    | er Reading                                                         | 24   |
|     | Refer                                              | ences                                                              | 24   |
| 2   | An Introduction to Computational Quantum Mechanics |                                                                    |      |
|     | 2.1                                                | Introduction                                                       | 26   |
|     | 2.2                                                | One-electron Atoms                                                 | 30   |
|     | 2.3                                                | Polyelectronic Atoms and Molecules                                 | 34   |
|     | 2.4                                                | Molecular Orbital Calculations                                     | 41   |
|     | 2.5                                                | The Hartree-Fock Equations                                         | 51   |
|     | 2.6                                                | Basis Sets                                                         | 65   |
|     | 2.7                                                | Calculating Molecular Properties Using ab initio Quantum Mechanics | 74   |
|     | 2.8                                                | Approximate Molecular Orbital Theories                             | 86   |
|     | 2.9                                                | Semi-empirical Methods                                             | 86   |
|     | 2.10                                               | Hückel Theory                                                      | 99   |
|     | 2.11                                               | Performance of Semi-empirical Methods                              | 102  |
|     | Appe                                               | endix 2.1 Some Common Acronyms Used in Computational               |      |
|     |                                                    | Quantum Chemistry                                                  | 104  |
|     | Further Reading                                    |                                                                    | 105  |
|     | Refer                                              | rences                                                             | 105  |

| 3 | Advanced ab initio Methods, Density Functional Theory and Solid-state |                                                                        |             |  |
|---|-----------------------------------------------------------------------|------------------------------------------------------------------------|-------------|--|
|   | Quar                                                                  | ntum Mechanics                                                         | 108         |  |
|   | 3.1                                                                   | Introduction                                                           | 108         |  |
|   | 3.2                                                                   | Open-shell Systems                                                     | 108         |  |
|   | 3.3                                                                   | Electron Correlation                                                   | 110         |  |
|   | 3.4                                                                   | Practical Considerations When Performing ab initio Calculations        | 117         |  |
|   | 3.5                                                                   | Energy Component Analysis                                              | 122         |  |
|   | 3.6                                                                   | Valence Bond Theories                                                  | 124         |  |
|   | 3.7                                                                   | Density Functional Theory                                              | 126         |  |
|   | 3.8                                                                   | Quantum Mechanical Methods for Studying the Solid State                | 138         |  |
|   | 3.9                                                                   | The Future Role of Quantum Mechanics: Theory and Experiment            | 1/0         |  |
|   | A                                                                     | Working Together                                                       | 160         |  |
|   | Appe                                                                  | endix 3.1 Alternative Expression for a Wavefunction Satisfying Bloch's | 1/1         |  |
|   | Ennel                                                                 | Function                                                               | 161         |  |
|   |                                                                       | ner Reading<br>Tences                                                  | 161         |  |
|   | Kelei                                                                 | ences                                                                  | 162         |  |
| 4 | Empi                                                                  | irical Force Field Models: Molecular Mechanics                         | 165         |  |
|   | 4.1                                                                   | Introduction                                                           | 165         |  |
|   | 4.2                                                                   | Some General Features of Molecular Mechanics Force Fields              | 168         |  |
|   | 4.3                                                                   | Bond Stretching                                                        | 170         |  |
|   | 4.4                                                                   | Angle Bending                                                          | 173         |  |
|   | 4.5                                                                   | Torsional Terms                                                        | <b>17</b> 3 |  |
|   | 4.6                                                                   | Improper Torsions and Out-of-plane Bending Motions                     | 176         |  |
|   | 4.7                                                                   | Cross Terms: Class 1, 2 and 3 Force Fields                             | 178         |  |
|   | 4.8                                                                   | Introduction to Non-bonded Interactions                                | 181         |  |
|   | 4.9                                                                   | Electrostatic Interactions                                             | 181         |  |
|   | 4.10                                                                  | Van der Waals Interactions                                             | 204         |  |
|   | 4.11                                                                  | Many-body Effects in Empirical Potentials                              | 212         |  |
|   | 4.12                                                                  | Effective Pair Potentials                                              | 214         |  |
|   | 4.13                                                                  | Hydrogen Bonding in Molecular Mechanics                                | 215         |  |
|   | 4.14                                                                  | Force Field Models for the Simulation of Liquid Water                  | 216         |  |
|   | 4.15                                                                  | United Atom Force Fields and Reduced Representations                   | 221         |  |
|   | 4.16                                                                  | Derivatives of the Molecular Mechanics Energy Function                 | 225         |  |
|   | 4.17                                                                  | Calculating Thermodynamic Properties Using a Force Field               | 226         |  |
|   | 4.18                                                                  | Force Field Parametrisation                                            | 228         |  |
|   | 4.19                                                                  | Transferability of Force Field Parameters                              | 231         |  |
|   | 4.20                                                                  | The Treatment of Delocalised $\pi$ Systems                             | 233         |  |
|   | 4.21                                                                  | Force Fields for Inorganic Molecules                                   | 234         |  |
|   | 4.22                                                                  | Force Fields for Solid-state Systems                                   | 236         |  |
|   | 4.23                                                                  | Empirical Potentials for Metals and Semiconductors                     | <b>24</b> 0 |  |
|   | Appe                                                                  | endix 4.1 The Interaction Between Two Drude Molecules                  | 246         |  |
|   | Furth                                                                 | ner Reading                                                            | 247         |  |
|   | Refer                                                                 | rences                                                                 | 247         |  |

| 5 | Energy Minimisation and Related Methods for Exploring the Energy Surfa     | ice <b>25</b> 3 |  |
|---|----------------------------------------------------------------------------|-----------------|--|
| ٠ | 5.1 Introduction                                                           | 253             |  |
|   | 5.2 Non-derivative Minimisation Methods                                    | 258             |  |
|   | 5.3 Introduction to Derivative Minimisation Methods                        | 261             |  |
|   | 5.4 First-order Minimisation Methods                                       | 262             |  |
|   | 5.5 Second Derivative Methods: The Newton-Raphson Method                   | 267             |  |
|   | 5.6 Quasi-Newton Methods                                                   | 268             |  |
|   | 5.7 Which Minimisation Method Should I Use?                                | <b>27</b> 0     |  |
|   | 5.8 Applications of Energy Minimisation                                    | 273             |  |
|   | 5.9 Determination of Transition Structures and Reaction Pathways           | 279             |  |
|   | 5.10 Solid-state Systems: Lattice Statics and Lattice Dynamics             | 295             |  |
|   | Further Reading                                                            | 300             |  |
|   | References                                                                 | 301             |  |
| 6 | Computer Simulation Methods                                                | 303             |  |
|   | 6.1 Introduction                                                           | 303             |  |
|   | 6.2 Calculation of Simple Thermodynamic Properties                         | 307             |  |
|   | 6.3 Phase Space                                                            | 312             |  |
|   | 6.4 Practical Aspects of Computer Simulation                               | 315             |  |
|   | 6.5 Boundaries                                                             | 317             |  |
|   | 6.6 Monitoring the Equilibration                                           | 321             |  |
|   | 6.7 Truncating the Potential and the Minimum Image Convention              | 324             |  |
|   | 6.8 Long-range Forces                                                      | 334             |  |
|   | 6.9 Analysing the Results of a Simulation and Estimating Errors            | 343             |  |
|   | Appendix 6.1 Basic Statistical Mechanics                                   | 347             |  |
|   | Appendix 6.2 Heat Capacity and Energy Fluctuations                         | 348             |  |
|   | Appendix 6.3 The Real Gas Contribution to the Virial                       | 349             |  |
|   | Appendix 6.4 Translating Particle Back into Central Box for Three Box Shap |                 |  |
|   | Further Reading                                                            |                 |  |
|   | References                                                                 | 351<br>351      |  |
| 7 | Molecular Dynamics Simulation Methods                                      | 252             |  |
|   | 7.1 Introduction                                                           | 353             |  |
|   | 7.2 Molecular Dynamics Using Simple Models                                 | 353             |  |
|   | 7.3 Molecular Dynamics with Continuous Potentials                          | 353             |  |
|   | 7.4 Setting up and Running a Molecular Dynamics Simulation                 | 355<br>364      |  |
|   | 7.5 Constraint Dynamics                                                    |                 |  |
|   | 7.6 Time-dependent Properties                                              | 368<br>374      |  |
|   | 7.7 Molecular Dynamics at Constant Temperature and Pressure                | 382             |  |
|   | 7.8 Incorporating Solvent Effects into Molecular Dynamics: Potentials of   | 302             |  |
|   | Mean Force and Stochastic Dynamics                                         | 387             |  |
|   | 7.9 Conformational Changes from Molecular Dynamics Simulations             | 392             |  |
|   | 7.10 Molecular Dynamics Simulations of Chain Amphiphiles                   | 394             |  |
|   |                                                                            |                 |  |

|   | Appe                       | endix 7.1 Energy Conservation in Molecular Dynamics                                      | 405         |  |  |
|---|----------------------------|------------------------------------------------------------------------------------------|-------------|--|--|
|   | Furth                      | ner Reading                                                                              | 406         |  |  |
|   | Refer                      | rences                                                                                   | 406         |  |  |
|   | 34                         | to Code Circulation New La                                                               |             |  |  |
| 8 | 8.1                        | te Carlo Simulation Methods Introduction                                                 | 410         |  |  |
|   | 8.2                        |                                                                                          | 410         |  |  |
|   | 8.3                        | Calculating Properties by Integration                                                    | 412         |  |  |
|   | 8.4                        | Some Theoretical Background to the Metropolis Method                                     | 414         |  |  |
|   | 8.5                        | Implementation of the Metropolis Monte Carlo Method  Monte Carlo Simulation of Molecules | 417         |  |  |
|   | 8.6                        | Models Used in Monte Carlo Simulations of Polymers                                       | 420         |  |  |
|   | 8.7                        | 'Biased' Monte Carlo Methods                                                             | 423         |  |  |
|   | 8.8                        | Tackling the Problem of Quasi-ergodicity: J-walking and Multicanonical                   | <b>4</b> 32 |  |  |
|   | 0.0                        | Monte Carlo                                                                              | 433         |  |  |
|   | 8.9                        | Monte Carlo Sampling from Different Ensembles                                            | 438         |  |  |
|   | 8.10                       | Calculating the Chemical Potential                                                       | 442         |  |  |
|   | 8.11                       | The Configurational Bias Monte Carlo Method                                              | 443         |  |  |
|   | 8.12                       | Simulating Phase Equilibria by the Gibbs Ensemble Monte Carlo Method                     | 450         |  |  |
|   | 8.13                       | Monte Carlo or Molecular Dynamics?                                                       | 452         |  |  |
|   |                            | endix 8.1 The Marsaglia Random Number Generator                                          | 453         |  |  |
|   |                            | ner Reading                                                                              | 454         |  |  |
|   |                            | rences                                                                                   | 454         |  |  |
|   |                            |                                                                                          | 151         |  |  |
| 9 | Conformational Analysis 45 |                                                                                          |             |  |  |
|   | 9.1                        | Introduction                                                                             | 457         |  |  |
|   | 9.2                        | Systematic Methods for Exploring Conformational Space                                    | 458         |  |  |
|   | 9.3                        | Model-building Approaches                                                                | 464         |  |  |
|   | 9.4                        | Random Search Methods                                                                    | 465         |  |  |
|   | 9.5                        | Distance Geometry                                                                        | 467         |  |  |
|   | 9.6                        | Exploring Conformational Space Using Simulation Methods                                  | 475         |  |  |
|   | 9.7                        | Which Conformational Search Method Should I Use? A Comparison of                         |             |  |  |
|   |                            | Different Approaches                                                                     | 476         |  |  |
|   | 9.8                        | Variations on the Standard Methods                                                       | 477         |  |  |
|   | 9.9                        | Finding the Global Energy Minimum: Evolutionary Algorithms and                           |             |  |  |
|   |                            | Simulated Annealing                                                                      | 479         |  |  |
|   | 9.10                       | Solving Protein Structures Using Restrained Molecular Dynamics and                       |             |  |  |
|   |                            | Simulated Annealing                                                                      | 483         |  |  |
|   | 9.11                       | Structural Databases                                                                     | 489         |  |  |
|   | 9.12                       | Molecular Fitting                                                                        | 490         |  |  |
|   | 9.13                       | Clustering Algorithms and Pattern Recognition Techniques                                 | 491         |  |  |
|   | 9.14                       | Reducing the Dimensionality of a Data Set                                                | 497         |  |  |
|   | 9.15                       | Covering Conformational Space: Poling                                                    | 499         |  |  |
|   | 9.16                       | A 'Classic' Optimisation Problem: Predicting Crystal Structures                          | 501         |  |  |
|   |                            |                                                                                          |             |  |  |

Contents

|    | Further Reference                                                           | _                                                                    | •                                                         | 505<br>506  |  |
|----|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-------------|--|
|    |                                                                             |                                                                      |                                                           |             |  |
| 10 |                                                                             |                                                                      | re Prediction, Sequence Analysis and Protein Folding      | 509         |  |
|    |                                                                             | ntroduct                                                             |                                                           | 509         |  |
|    |                                                                             |                                                                      | sic Principles of Protein Structure                       | 513         |  |
|    |                                                                             | -                                                                    | ciples Methods for Predicting Protein Structure           | 517         |  |
|    |                                                                             |                                                                      | ion to Comparative Modelling                              | 522         |  |
|    |                                                                             | -                                                                    | Alignment                                                 | 522         |  |
|    |                                                                             |                                                                      | ting and Evaluating a Comparative Model                   | 539         |  |
|    |                                                                             |                                                                      | g Protein Structures by 'Threading'                       | <b>54</b> 5 |  |
|    |                                                                             | -                                                                    | arison of Protein Structure Prediction Methods: CASP      | 547         |  |
|    |                                                                             |                                                                      | olding and Unfolding                                      | 549         |  |
|    | Append                                                                      | ix 10.1                                                              | Some Common Abbreviations and Acronyms Used in            |             |  |
|    |                                                                             |                                                                      | Bioinformatics                                            | 553         |  |
|    | Append                                                                      | ix 10.2                                                              | Some of the Most Common Sequence and Structural Databases |             |  |
|    |                                                                             |                                                                      | Used in Bioinformatics                                    | 555         |  |
|    |                                                                             |                                                                      | Mutation Probability Matrix for 1 PAM                     | 556         |  |
|    | Append                                                                      | ix 10.4                                                              | Mutation Probability Matrix for 250 PAM                   | 557         |  |
|    | Further                                                                     | Reading                                                              | <b>5</b>                                                  | 557         |  |
|    | Reference                                                                   | ces                                                                  |                                                           | 558         |  |
|    |                                                                             |                                                                      |                                                           |             |  |
| 11 | Four Challenges in Molecular Modelling: Free Energies, Solvation, Reactions |                                                                      |                                                           |             |  |
|    | and Sol                                                                     | id-state                                                             | Defects                                                   | 563         |  |
|    | 11.1 F                                                                      | ree Ener                                                             | rgy Calculations                                          | 563         |  |
|    |                                                                             |                                                                      | ulation of Free Energy Differences                        | 564         |  |
|    |                                                                             |                                                                      | ons of Methods for Calculating Free Energy Differences    | 569         |  |
|    | 11.4 T                                                                      | he Calc                                                              | ulation of Enthalpy and Entropy Differences               | 574         |  |
|    | 11.5 P                                                                      | artition                                                             | ing the Free Energy                                       | 574         |  |
|    | 11.6 P                                                                      | otential                                                             | Pitfalls with Free Energy Calculations                    | 577         |  |
|    | 11.7 P                                                                      | otential                                                             | s of Mean Force                                           | 580         |  |
|    | 11.8 A                                                                      | pproxir                                                              | nate/'Rapid' Free Energy Methods                          | 585         |  |
|    | 11.9 C                                                                      | Continuu                                                             | ım Representations of the Solvent                         | 592         |  |
|    | 11.10 T                                                                     | 1.10 The Electrostatic Contribution to the Free Energy of Solvation: |                                                           |             |  |
|    | The Born and Onsager Models                                                 |                                                                      |                                                           | 593         |  |
|    | 11.11 Non-electrostatic Contributions to the Solvation Free Energy          |                                                                      |                                                           | 608         |  |
|    |                                                                             |                                                                      | ple Solvation Models                                      | 609         |  |
|    |                                                                             |                                                                      | g Chemical Reactions                                      | 610         |  |
|    |                                                                             |                                                                      | g Solid-state Defects                                     | 622         |  |
|    |                                                                             |                                                                      | Calculating Free Energy Differences Using Thermodynamic   |             |  |
|    |                                                                             |                                                                      | Integration                                               | 630         |  |
|    | Append                                                                      | ix 11.2                                                              | Using the Slow Growth Method for Calculating Free Energy  | 2.0         |  |
|    |                                                                             |                                                                      | Differences                                               | 631         |  |

**72**7

|     | Appe       | ndix 11.3 Expansion of Zwanzig Expression for the Free Energy Difference for the Linear Response Method | 631        |
|-----|------------|---------------------------------------------------------------------------------------------------------|------------|
|     | Furth      | er Reading                                                                                              | 632        |
|     | Refer      | ences                                                                                                   | 633        |
|     |            |                                                                                                         |            |
| 12  | The U      | Jse of Molecular Modelling and Chemoinformatics to Discover and                                         |            |
|     |            | n New Molecules                                                                                         | 640        |
|     | 12.1       | Molecular Modelling in Drug Discovery                                                                   | 640        |
|     | 12.2       | Computer Representations of Molecules, Chemical Databases and 2D                                        |            |
|     |            | Substructure Searching                                                                                  | 642        |
|     | 12.3       | 3D Database Searching                                                                                   | 647        |
|     | 12.4       |                                                                                                         | 648        |
|     | 12.5       | Sources of Data for 3D Databases                                                                        | 659        |
|     | 12.6       | <del></del>                                                                                             | 661        |
|     | 12.7       | Applications of 3D Database Searching and Docking                                                       | 667        |
|     | 12.8       | Molecular Similarity and Similarity Searching                                                           | 668        |
|     | 12.9       |                                                                                                         | 668        |
|     | 12.10      | Selecting 'Diverse' Sets of Compounds                                                                   | 680        |
|     |            | Structure-based De Novo Ligand Design                                                                   | 687        |
|     | 12.12      | Quantitative Structure-Activity Relationships                                                           | 695        |
|     |            | Partial Least Squares                                                                                   | 706        |
|     | 12.14      | Combinatorial Libraries                                                                                 | <b>711</b> |
|     | Furth      | er Reading                                                                                              | 719        |
|     | References |                                                                                                         | 720        |
|     |            |                                                                                                         |            |
| Ind | ex         |                                                                                                         | 727        |