

Gauge Theory of Elementary Particle Physics Problems and Solutions

Ta-Pei Cheng and Ling-Fong Li

Contents

1	Field quantization	
1.1	Simple exercises in $\lambda \phi^4$ theory	1
1.2	Auxiliary field	6
1.3	Disconnected diagrams	8
1.4	Simple external field problem	9
1.5	Path integral for a free particle	- 11
1.6	Path integral for a general quadratic action	13
1.7	Spreading of a wave packet	16
1.8	Path integral for a harmonic oscillator	17
1.9	Path integral for a partition function	21
1.10	Partition function for an SHO system	23
1.11	Non-standard path-integral representation	25
1.12	Weyl ordering of operators	26
1.13	Generating functional for a scalar field	32
1.14	Poles in Green's function	35
2	Renormalization	
2.1	Counterterms in $\lambda \phi^4$ theory and in QED	37
2.2	Divergences in non-linear chiral theory	39
2.3	Divergences in lower-dimensional field theories	41
2.4	n-Dimensional 'spherical' coordinates	43
2.5	Some integrals in dimensional regularization	46
2.6	Vacuum polarization and subtraction schemes	49
2.7	Renormalization of $\lambda \phi^3$ theory in <i>n</i> dimensions	53
2.8	Renormalization of composite operators	57
2.9	Cutkosky rules	59
3	Renormalization group	
3.1	Homogeneous renormalization-group equation	63
3.2	Renormalization constants	64
3.3	β -function for QED	67
3.4	Behaviour of \bar{g} near a simple fixed point	69
3.5	Running coupling near a general fixed point	70
3.6	One-loop renormalization-group equation in massless $\lambda \phi^4$ theory	71
3.7	β-function for the Yukawa coupling	72
3.8	Solving the renormalization-group equation by Coleman's method	75
3.9	Anomalous dimensions for composite operators	77

viii	Contents
------	----------

.

4	Group theory and the quark model	
4.1	Unitary and hermitian matrices	78
4.2	SU(n) matrices	79
4.3	Reality of SU(2) representations	7 9
4.4	An identity for unitary matrices	81
4.5	An identity for SU(2) matrices	82
4.6	SU(3) algebra in terms of quark fields	83
4.7	Combining two spin- $\frac{1}{2}$ states	85
4.8	The SU(2) adjoint representation	87
4.9	Couplings of SU(2) vector representations	89
4.10	Isospin breaking effects	90
4.11	Spin wave function of three quarks	93
4.12	Permutation symmetry in the spin-isospin space	96
4.13	Combining two fundamental representations	97
4.14	SU(3) invariant octet baryon-meson couplings	100
4.15	Isospin wave functions of two pions	105
4.16	Isospins in non-leptonic weak processes	107
5	Chiral symmetry	
5.1	Another derivation of Noether's current	110
5.2	Lagrangian with second derivatives	111
5.3	Conservation laws in a non-relativistic theory	113
5.4	Symmetries of the linear σ -model	115
5.5	Spontaneous symmetry breaking in the σ -model	122
5.6	PCAC in the σ -model	123
5.7	Non-linear σ -model I	126
5.8	Non-linear σ -model II	128
5.9	Non-linear σ -model III	130
5.10	SSB by two scalars in the vector representation	133
6	Renormalization and symmetry	
6.1	Path-integral derivation of axial anomaly	136
6.2	Axial anomaly and $\eta \to \gamma \gamma$	140
6.3	Soft symmetry breaking and renormalizability	142
6.4	Calculation of the one-loop effective potential	143
7	The Parton model and scaling	
7.1	The Gottfried sum rule	146
7.2	Calculation of OPE Wilson coefficients	147
7.3	$\sigma_{tot}(e^+e^- \to hadrons)$ and short-distance physics	151
7.4	OPE of two charged weak currents	155
7.5	The total decay rate of the W-boson	156
8	Gauge symmetries	
8.1	The gauge field in tensor notation	158
8.2	Gauge field and geometry	161
8.3	General relativity as a gauge theory	163

Contents ix

8.4	O(n) gauge theory	165
8.5	Broken generators and Goldstone bosons	167
8.6	Symmetry breaking by an adjoint scalar	169
8.7	Symmetry breaking and the coset space	171
8.8	Sealar potential and first-order phase transition	172
8.9	Superconductivity as a Higgs phenomenon	173
9 ੍	Quantum gauge theories	
9.1	Propagator in the covariant R_{ξ} gauge	175
9.2	The propagator for a massive vector field	176
9.3	Gauge boson propagator in the axial gauge	177
9.4	Gauge boson propagator in the Coulomb gauge	178
9.5	Gauge invariance of a scattering amplitude	180
9.6	Ward identities in QED	180
9.7	Nilpotent BRST charges	184
9.8	BRST charges and physical states	186
10	Quantum chromodynamics	
10.1	Colour factors in QCD loops	188
10.2	Running gauge coupling in two-loop	191
10.3	Cross-section for three-jet events	193
10.4	Operator-product expansion of two currents	198
10.5	Calculating Wilson coefficients	201
11	Electroweak theory	
11.1	Chiral spinors and helicity states	205
11.2	The polarization vector for a fermion	206
11.3	The pion decay rate and f_{π}	208
11.4	Uniqueness of the standard model scalar potential	212
11.5	Electromagnetic and gauge couplings	213
11.6	Fermion mass-matrix diagonalization	214
11.7	An example of calculable mixing angles	215
11.8	Conservation of the $B-L$ quantum number	216
12	Electroweak phenomenology	
12.1	Atomic parity violation	218
12.2	Polarization asymmetry of $Z \rightarrow \bar{f} f$	221
12.3	Simple τ-lepton decays	222
12.4	Electron neutrino scatterings	223
12.5	CP properties of kaon non-leptonic decays	225
12.6	$Z \rightarrow HH$ is forbidden	226
12.7	$\Delta I = \frac{1}{2}$ enhancement by short-distance QCD	227
12.8	Scalar interactions and the equivalence theorem	230
12.9	Two-body decays of a heavy Higgs boson	234

X	Contents

13	Topics in flavourdynamics	
13.1	Anomaly-free condition in a technicolour theory	238
13.2	Pseudo-Goldstone bosons in a technicolour model	239
13.3	Properties of Majorana fermions	239
13.4	$\mu \rightarrow e \gamma$ and heavy neutrinos	244
13.5	Leptonic mixings in a vector-like theory	250
13.6	Muonium-antimuonium transition	252
14	Grand unification	
14.1	Content of SU(5) representations	255
14.2	Higgs potential for SU(5) adjoint scalars	256
14.3	Massive gauge bosons in SU(5)	258
14.4	Baryon number non-conserving operators	260
14.5	SO(n) group algebra	260
14.6	Spinor representations of $SO(n)$	263
14.7	Relation between $SO(2n)$ and $SU(n)$ groups	267
14.8	Construction of $SO(2n)$ spinors	269
15	Magnetic monopoles	
15.1	The Sine-Gordon equation	275
15.2	Planar vortex field	280
15.3	Stability of soliton	282
15.4	Monopole and angular momentum	283
16	instantons	
16.1	The saddle-point method	289
16.2	An application of the saddle-point method	292
16.3	A Euclidean double-well problem	295
Refer	ences	301
Index		303