Fundamentals of Momentum, Heat, and Mass Transfer

4th Edition

James R. Welty Charles E. Wicks Robert E. Wilson Gregory Rorrer

Contents

1.	Conce	pts and Definitions 1
	1.1	Fluids and the Continuum 1
	1.2	Properties at a Point 2
	1.3	Point-to-Point Variation of Properties in a Fluid 5
	1.4	Units 8
2.	Fluid S	Statics 12
	2.1	Pressure Variation in a Static Fluid 12
	2.2	Uniform Rectilinear Acceleration 15
	2.3	Forces on Submerged Surfaces 16
	2.4	Buoyancy 19
	2.5	Closure 21
3.	Descri	ption of a Fluid in Motion 27
	3.1	Fundamental Physical Laws 27
	3.2	Fluid Flow Fields: Lagrangian and Eulerian Representations 27
	3.3	Steady and Unsteady Flows 28
	3.4	Streamlines 29
	3.5	Systems and Control Volumes 30
4.	Conse	rvation of Mass: Control-Volume Approach 32
	4.1	Integral Relation 32
	4.2	Specific Forms of the Integral Expression 33
	4.3	Closure 37
		\dot{i}
5.	Newto	n's Second Law of Motion: Control-Volume Approach 44
	5.1	Integral Relation for Linear Momentum 44
	5.2	Applications of the Integral Expression for Linear Momentum 47
	5.3	Integral Relation for Moment of Momentum 53
	5.4	Applications to Pumps and Turbines 55
	5.5	Closure 59
_	Conso	rvation of Energy: Control-Volume Approach 68
6.		***
	6.1	Integral Relation for the Conservation of Energy 68
	6.2	Applications of the Integral Expression 74
	6.3	The Bernoulli Equation 77
	6.4	Closure 81

7.	Shear	Stress in Laminar Flow 89
	7.1	Newton's Viscosity Relation 89
	7.2	Non-Newtonian Fluids 90
	7.3	Viscosity 91
	7.4	Shear Stress in Multidimensional Laminar Flows of a Newtonian
		Fluid 96
	7.5	Closure 98
8.	Analy	sis of a Differential Fluid Element in Laminar Flow 101
	8.1	Fully Developed Laminar Flow in a Circular Conduit of Constant Cross Section 101
	8.2	Laminar Flow of a Newtonian Fluid Down an Inclined-Plane
		Surface 104
	8.3	Closure 106
9.	Differ	rential Equations of Fluid Flow 109
	9.1	The Differential Continuity Equation 109
	9.2	Navier-Stokes Equations 112
	9.3	Bernoulli's Equation 120
	9.4	Closure 121
10.	Invisc	rid Fluid Flow 124
	10.1	Fluid Rotation at a Point 124
	10.2	The Stream Function 125
	10.3	Inviscid, Irrotational Flow about an Infinite Cylinder 127
	10.4	Irrotational Flow, the Velocity Potential 128
	10.5	Total Heat in Irrotational Flow 129
	10.6	Utilization of Potential Flow 130
	10.7	Potential Flow Analysis—Simple Plane Flow Cases 131
	10.8	Potential Flow Analysis—Superposition 132
	10.9	Closure 134
11.	Dime	nsional Analysis 137
	11.1	Dimensions 137
	11.2	Geometric and Kinematic Similarity 138
	11.3	Dimensional Analysis of the Navier-Stokes Equation 138
	11.4	The Buckingham Method 140
	11.5	Model Theory 142
	11.6	Closure 144
12.	Visco	us Flow 149
	12.1	Reynolds' Experiment 149
	12.2	Drag 150
	12.3	The Boundary-Layer Concept 153
	12.4	The Boundary-Layer Equations 155
	12.5	Blasius' Solution for the Laminar Boundary Layer on a Flat Plate 156
	12.6	Flow with a Pressure Gradient 160

	12.7	von Kármán Momentum Integral Analysis 162
	12.8	Closure 166
13.	The E	ffect of Turbulence on Momentum Transfer 170
	13.1	Description of Turbulence 170
	13.2	Turbulent Shearing Stresses 171
	13.3	The Mixing-Length Hypothesis 173
	13.4	Velocity Distribution from the Mixing-Length Theory 174
	13.5	The Universal Velocity Distribution 176
	13.6	Further Empirical Relations for Turbulent Flow 177
	13.7	The Turbulent Boundary Layer on a Flat Plate 178
	13.8	Factors Affecting the Transition from Laminar to Turbulent Flow 180
	13.9	Closure 180
14.	Flow i	n Closed Conduits 183
	14.1	Dimensional Analysis of Conduit Flow 183
	14.2	Friction Factors for Fully Developed Laminar, Turbulent, and Transition
		Flow in Circular Conduits 185
	14.3	Friction Factor and Head-Loss Determination for Pipe Flow 188
	14.4	Pipe-Flow Analysis 191
	14.5	Friction Factors for Flow in the Entrance to a Circular Conduit 195
	14.6	Closure 198
15.	Funda	amentals of Heat Transfer 201
	15.1	Conduction 201
٠	15.2	Thermal Conductivity 202
	15.3	Convection 208
	15.4	Radiation 209
	15.5	Combined Mechanisms of Heat Transfer 209
	15.6	Closure 214
16.	Differ	ential Equations of Heat Transfer 219
	16.1	The General Differential Equation for Energy Transfer 219
	16.2	Special Forms of the Differential Energy Equation 222
	16.3	Commonly Encountered Boundary Conditions 223
	16.4	Closure 224
17.	Steady	y-State Conduction 226
	17.1	One-Dimensional Conduction 226
	17.2	One-Dimensional Conduction with Internal Generation of Energy 233
	17.3	Heat Transfer from Extended Surfaces 236
	17.4	Two- and Three-Dimensional Systems 243
	17.5	Closure 255
18.	Unste	ady-State Conduction 263
	18.1	Analytical Solutions 263
	18.2	Temperature-Time Charts for Simple Geometric Shapes 272
	18.3	Numerical Methods for Transient Conduction Analysis 275

	18.4	An Integral Method for One-Dimensional Unsteady Conduction 278
	18.5	Closure 283
19.	Conve	ective Heat Transfer 288
	19.1	Fundamental Considerations in Convective Heat Transfer 288
	19.2	Significant Parameters in Convective Heat Transfer 289
	19.3	Dimensional Analysis of Convective Energy Transfer 290
	19.4	Exact Analysis of the Laminar Boundary Layer 293
	19.5	Approximate Integral Analysis of the Thermal Boundary Layer 297
	19.6	Energy- and Momentum-Transfer Analogies 299
	19.7	Turbulent Flow Considerations 301
	19.8	Closure 307
20.	Conve	ective Heat-Transfer Correlations 312
	20.1	Natural Convection 312
	20.2	Forced Convection for Internal Flow 320
	20.3	Forced Convection for External Flow 326
	20.4	Closure 333
21.	Boilin	g and Condensation 340
	21.1	Boiling 340
	21.2	Condensation 345
	21.3	Closure 351
22.	Heat-	Iransfer Equipment 354
	22.1	Types of Heat Exchangers 354
	22.2	Single-Pass Heat-Exchanger Analysis: The Log-Mean Temperature
		Difference 357
	22.3	Crossflow and Shell-and-Tube Heat-Exchanger Analysis 361
	22.4	The Number-of-Transfer-Units (NTU) Method of Heat-Exchanger Analysis and Design 365
	22.5	Additional Considerations in Heat-Exchanger Design 373
	22.6	Closure 375
23.	Radia	tion Heat Transfer 379
	23.1	Nature of Radiation 379
	23.2	Thermal Radiation 380
	23.3	The Intensity of Radiation 382
	23.4	Planck's Law of Radiation 383
	23.5	Stefan-Boltzmann Law 388
	23.6	Emissivity and Absorptivity of Solid Surfaces 388
	23.7	Radiant Heat Transfer Between Black Bodies 394
	23.8	Radiant Exchange in Black Enclosures 400
	23.9	Radiant Exchange in Reradiating Surfaces Present 401
	23.10	Radiant Heat Transfer Between Gray Surfaces 402
	23.11	Radiation from Gases 410
	23.12	The Radiation Heat-Transfer Coefficient 414
	23 13	Closure 414

24.	Fund	amentals of Mass Transfer 421	
	24.1	Molecular Mass Transfer 421	
	24.2	The Diffusion Coefficient 431	
	24.3	Convective Mass Transfer 450	
	24.4	Closure 451	
25.	Diffe	rential Equations of Mass Transfer 457	
	25.1	The Differential Equation for Mass Transfer 457	
	25.2	Special Forms of the Differential Mass-Transfer Equation 460	
	25.3	Commonly Encountered Boundary Conditions 462	
	25.4	Steps for Modeling Processes Involving Molecular Diffusion 465	
	25.5	Closure 472	
26.	Stead	y-State Molecular Diffusion 479	
	26.1	One-Dimensional Mass Transfer Independent of Chemical	
		Reaction 479	
	26.2	One-Dimensional Systems Associated with Chemical Reaction 491	
	26.3	Two- and Three-Dimensional Systems 503	
	26.4	Simultaneous Momentum, Heat, and Mass Transfer 506	
	26.5	Closure 516	
27.	Unsteady-State Molecular Diffusion 527		
	27.1	Unsteady-State Diffusion and Fick's Second Law 527	
	27.2	Transient Diffusion in a Semi-Infinite Medium 529	
	27.3	Transient Diffusion in a Finite-Dimensional Medium Under Conditions of	
		Negligible Surface Resistance 531	
	27.4	Concentration-Time Charts for Simple Geometric Shapes 541	
	27.5	Closure 544	
28.	Conve	ective Mass Transfer 550	
	28.1	Fundamental Considerations in Convective Mass Transfer 550	
	28.2	Significant Parameters in Convective Mass Transfer 552	
	28.3	Dimensional Analysis of Convective Mass Transfer 554	
	28.4	Exact Analysis of the Laminar Concentration Boundary Layer 557	
	28.5	Approximate Analysis of the Concentration Boundary Layer 564	
	28.6	Mass, Energy, and Momentum-Transfer Analogies 567	
	28.7	Models for Convective Mass-Transfer Coefficients 576	
	28.8	Closure 579	
29.	Conve	ective Mass Transfer Between Phases 586	
	29.1	Equilibrium 586	
	29.2	Two-Resistance Theory 589	
•	29.3	Closure 599	
30.	Conve	ective Mass-Transfer Correlations 605	
	30.1	Mass Transfer to Plates, Spheres, and Cylinders 605	
	30.2	Mass Transfer Involving Flow Through Pipes 616	
	30.3	Mass Transfer in Wetted-Wall Columns 617	

	30.4	Mass Transfer in Packed and Fluidized Beds 621
	30.5	Gas-Liquid Mass Transfer in Stirred Tanks 622
	30.6	Capacity Coefficients for Packed Towers 624
	30.7	Steps for Modeling Mass-Transfer Processes Involving Convection 625
	30.8	Closure 633
31.	Mass-	Transfer Equipment 645
	31.1	Types of Mass-Transfer Equipment 645
	31.2	Gas-Liquid Mass-Transfer Operations in Well-Mixed Tanks 648
	31.3	Mass Balances for Continuous Contact Towers: Operating-Line Equations 653
	31.4	Enthalpy Balances for Continuous-Contact Towers 663
	31.5	Mass-Transfer Capacity Coefficients 664
	31.6	Continuous-Contact Equipment Analysis 665
	31.7	Closure 680
No	menclatur	e 687
AP	PENDIX	ES
A.	Transfo	ormations of the Operators ∇ and ∇^2 to Cylindrical Coordinates 695
В.		ary of Differential Vector Operations in Various Coordinate
C.	Symme	try of the Stress Tensor 701
D.	The Vis	cous Contribution to the Normal Stress 702
E.	The Na and Spl	vier-Stokes Equations for Constant ρ and μ in Cartesian, Cylindrical, herical Coordinates 704
F.	Charts	for Solution of Unsteady Transport Problems 706
G.	Propert	ies of the Standard Atmosphere 719
H.	Physica	l Properties of Solids 722
I.	Physica	l Properties of Gases and Liquids 725
J.	Mass-T	ransfer Diffusion Coefficients in Binary Systems 738
K.	Lennar	d-Jones Constants 741
L.	The Err	or Function 744
M.	Standar	rd Pipe Sizes 745
N.	Standar	d Tubing Gages 747
Auth	nor Index	751
	ect Index	