

DESIGN OF

RF AND MICROWAVE AMPLIFIERS AND OSCILLATORS

DISK ENCLOSED

CONTENTS

PREFACE

CHAPTER 1	CHARACTERIZATION AND ANALYSIS OF LINEAR
	CIRCUITS AT RF AND MICROWAVE FREQUENCIES

1.1	INTRO	DDUCTION	1
1.2	Y-PAF	AMETERS	1
	1.2.1	The Indefinite Admittance Matrix	7
1.3	Z-PAR	AMETERS	8
1.4	TRAN	SMISSION PARAMETERS	10
1.5	SCAT	TERING PARAMETERS	11
	1.5.1		12
	1.5.2	•	
		Reflected Components of an N-Port	18
	1.5.3	The Physical Interpretations of the Scattering Parameters	20
	1.5.4		
		Components by the Terminations of an N-Port	23
	1.5.5	A	
	150	Parameters of a Two-Port	26
	1.5.6	5	31
	1.5.7	The Indefinite S-Matrix	35
	1.5.6	U 1 . ,	37
	1.5.9	Complex Frequency Plane Constraints on the Scattering Matrix of a Lossless N-Port	3 / 40
		Conversion of S-parameters to Other Parameters	44
	1.5.10	Conversion of 5-parameters to Other Farameters	44
REFE!	RENCE	S	46
ELE	CTED E	BIBLIOGRAPHY	46

CHAPTER 2 CHARACTERIZATION AND ANALYSIS OF ACTIVE CIRCUITS AT RF AND MICROWAVE FREQUENCIES

2.1	INTR	ODUCTION	47
2,2	NOIS	E PARAMETERS	48
	2.2.1	Modeling the Noise Contribution of a Two-Port with	
		Equivalent Circuits	48
		Noise Correlation Matrices	55
	2.2.3	Calculating the Noise Figure of a Cascade Network	58
2.3	THE	OUTPUT POWER OF LINEAR AMPLIFIERS	60
	2.3.1	Load-Line Considerations in Class A and Class B Amplifiers	61
	2.3.2	Distortion in Linear Amplifiers	67
	2.3.3	The Cripps Approach to Estimating the Maximum Output	
		Power Obtainable from a Transistor	73
	2.3.4	_	
		by Using the Power Parameters	75
REF	ERENC	ES	92
SELI	ECTED	BIBLIOGRAPHY	92
CHA	PTER	3 RADIO-FREQUENCY COMPONENTS	
3.1	INTR	ODUCTION	93
3.2	CAPA	ACITORS	94
3.3	INDU	UCTORS	97
	3.3.1	The Influence of Parasitic Capacitance on an Inductor	98
	3.3.2	Low-Frequency Losses in Inductors	100
	3.3.3	The Skin Effect	100
	3.3.4	The Proximity Effect	103
	3.3.5	Magnetic Materials	104
	3.3.6	The Design of Single-Layer Solenoidal Coils	107
	3.3.7	——————————————————————————————————————	113
3.4	TRA	NSMISSION LINES	117

	Contents	ix
	3.4.1 Coaxial Cables 3.4.2 Microstrip Transmission Lines 3.4.3 Twisted Pairs	117 118 122
REFI	RENCES	123
SELI	CTED BIBLIOGRAPHY	124
CHA	PTER 4 NARROWBAND IMPEDANCE-MATCHING WITH LC NETWORKS	
4.1	INTRODUCTION	125
4.2	PARALLEL RESONANCE	126
4.3	SERIES RESONANCE	131
4 .4	L-SECTIONS	133
4.5	PI-SECTIONS AND T-SECTIONS	138
	4.5.1 The PI-Section 4.5.2 The T-Section	139 142
4.6	THE DESIGN OF PI-SECTIONS AND T-SECTIONS WITH COMPLEX TERMINATIONS	143
4.7	FOUR-ELEMENT MATCHING NETWORKS	146
4.8	CALCULATION OF THE INSERTION LOSS OF AN LC IMPEDANCE-MATCHING NETWORK	147
4.9	CALCULATION OF THE BANDWIDTH OF CASCADED LC NETWORKS	149
SELI	CTED BIBLIOGRAPHY	150
CH/	PTER 5 COUPLED COILS AND TRANSFORMERS	
5.1	INTRODUCTION	151
5.2	THE IDEAL TRANSFORMER	151

Dagian	OFDE		A # :	A1262	3 (N:11-4
Design	OI VL	anu r	Microwave .	Amplifiers	and (JSCHILATORS

X

5.3	EQUIVALENT CIRCUITS FOR PRACTICAL TRANSFORMERS 1:				
5.4	WIDE	BAND IMPEDANCE MATCHING WITH TRANSFORMERS	150		
5.5	SINGLE-TUNED TRANSFORMERS				
5.6	TAPPED COILS				
5.7	PARALLEL DOUBLE-TUNED TRANSFORMERS				
5.8	SERIE	ES DOUBLE-TUNED TRANSFORMERS	172		
5.9		SUREMENT OF THE COUPLING FACTOR TRANSFORMER	175		
	5.9.1 5.9.2	Measurement of the Coupling Factor by Short-Circuiting the Secondary Winding Measurement of the Coupling Factor by Measuring the	175		
	5.9.3	Open-Circuit Voltage Gain Deriving the Coupling Factor from S-Parameters Measurements	176 176		
REFE	RENCE	3 S	177		
СНА	PTER	6 TRANSMISSION-LINE TRANSFORMERS			
6.1	INTR				
		ODUCTION	179		
6.2		ODUCTION ISMISSION-LINE TRANSFORMER CONFIGURATIONS	179 181		
6.2 6.3	TRAN				
	TRAN ANAI	ISMISSION-LINE TRANSFORMER CONFIGURATIONS	181		
6.3	TRAN ANAI DESIG	ISMISSION-LINE TRANSFORMER CONFIGURATIONS LYSIS OF TRANSMISSION-LINE TRANSFORMERS GN OF TRANSMISSION-LINE TRANSFORMERS Determining the Optimum Characteristic Impedance and Diameter of the Transmission Line to be Used	181 188		
6.3	TRAN ANAI DESIG	ISMISSION-LINE TRANSFORMER CONFIGURATIONS LYSIS OF TRANSMISSION-LINE TRANSFORMERS GN OF TRANSMISSION-LINE TRANSFORMERS Determining the Optimum Characteristic Impedance and	181 188 196		
6.3	TRAN ANAL DESIG	ISMISSION-LINE TRANSFORMER CONFIGURATIONS LYSIS OF TRANSMISSION-LINE TRANSFORMERS OF TRANSMISSION-LINE TRANSFORMERS Determining the Optimum Characteristic Impedance and Diameter of the Transmission Line to be Used Determining the Minimum Value of the Magnetizing Inductance of the Transformer Determining the Type and Size of the Magnetic Core to Be Used	181 188 196		
6.3	TRAN ANAL DESIG	ISMISSION-LINE TRANSFORMER CONFIGURATIONS LYSIS OF TRANSMISSION-LINE TRANSFORMERS OF TRANSMISSION-LINE TRANSFORMERS Determining the Optimum Characteristic Impedance and Diameter of the Transmission Line to be Used Determining the Minimum Value of the Magnetizing Inductance of the Transformer Determining the Type and Size of the Magnetic Core to Be Used Compensation of Transmission-Line Transformers for	181 188 196 196 197 201		
6.3	TRAN ANAL DESIG	ISMISSION-LINE TRANSFORMER CONFIGURATIONS LYSIS OF TRANSMISSION-LINE TRANSFORMERS OF TRANSMISSION-LINE TRANSFORMERS Determining the Optimum Characteristic Impedance and Diameter of the Transmission Line to be Used Determining the Minimum Value of the Magnetizing Inductance of the Transformer Determining the Type and Size of the Magnetic Core to Be Used	181 188 196 196		

Contents	xi
----------	----

6.5	CONSIDERATIONS APPLYING TO RF POWER AMPLIFIERS 21				
REFERENCES 21					
SELECTED BIBLIOGRAPHY 216					
cha	PTER 7	FILM RESISTORS AND SINGLE-LAYER PARALLEL-PLATE CAPACITORS			
7.1	INTRO	DUCTION	217		
7.2	FILM R	ESISTORS	219		
7.3	SINGLE	E-LAYER PARALLEL-PLATE CAPACITORS	220		
	7.3.2	Parallel-Plate Capacitors on a Ground Plane Parallel-Plate Capacitors Used as Series Stubs Series Connected Parallel-Plate Capacitors	223 224 226		
REFE	ERENCES		236		
СНА	PTER 8	THE DESIGN OF WIDEBAND IMPEDANCE-MATCHING NETWORKS			
CHA 8.1			239		
4	INTRO	IMPEDANCE-MATCHING NETWORKS	239 240		
8.1	INTRO	IMPEDANCE-MATCHING NETWORKS DUCTION G AN IMPEDANCE OR ADMITTANCE FUNCTION			
8.1 8.2	INTROPERSON INTROPERSON INTROPERSON INTROPERSON INTO A SECOND INTO A SEC	IMPEDANCE-MATCHING NETWORKS DUCTION G AN IMPEDANCE OR ADMITTANCE FUNCTION ET OF IMPEDANCE VERSUS FREQUENCY COORDINATES NALYTICAL APPROACH TO IMPEDANCE MATCHING Darlington Synthesis of Impedance-Matching Networks LC Transformers	240		
8.1 8.2	INTROI FITTIN TO A SI THE AN 8.3.1 I 8.3.2 I 8.3.3 I 8.3.4 I	IMPEDANCE-MATCHING NETWORKS DUCTION G AN IMPEDANCE OR ADMITTANCE FUNCTION ET OF IMPEDANCE VERSUS FREQUENCY COORDINATES NALYTICAL APPROACH TO IMPEDANCE MATCHING Darlington Synthesis of Impedance-Matching Networks LC Transformers The Gain-Bandwidth Constraints Imposed by Simple RC and RL Loads Direct Synthesis of Impedance-Matching Networks When the	240 246 248 253 256		
8.1 8.2	INTROI FITTIN TO A SI THE AN 8.3.1 II 8.3.2 II 8.3.3 II 8.3.4 II 8.3.5 S	IMPEDANCE-MATCHING NETWORKS DUCTION G AN IMPEDANCE OR ADMITTANCE FUNCTION ET OF IMPEDANCE VERSUS FREQUENCY COORDINATES NALYTICAL APPROACH TO IMPEDANCE MATCHING Darlington Synthesis of Impedance-Matching Networks LC Transformers The Gain-Bandwidth Constraints Imposed by Simple RC and RL Loads	240 246 248 253		
8.1 8.2	INTROI FITTIN TO A SI THE AN 8.3.1 II 8.3.2 II 8.3.3 II 8.3.4 II 8.3.5 SI	IMPEDANCE-MATCHING NETWORKS DUCTION G AN IMPEDANCE OR ADMITTANCE FUNCTION ET OF IMPEDANCE VERSUS FREQUENCY COORDINATES NALYTICAL APPROACH TO IMPEDANCE MATCHING Darlington Synthesis of Impedance-Matching Networks LC Transformers The Gain-Bandwidth Constraints Imposed by Simple RC and RL Loads Direct Synthesis of Impedance-Matching Networks When the Load (or Source) Is Reactive Synthesis of Networks for Matching a Reactive Load to a Purely	240 246 248 253 256		

8.4

Design of RF and Microwave Amplifiers and Oscillators

THE ITERATIVE DESIGN OF IMPEDANCE-MATCHING

	META	VORKS	272
	8.4.1	The Line-Segment Approach to Matching a Complex Load to a Resistive Source	273 276
	8.4.2	The Reflection Coefficient Approach to Solving	270
	8.4.3	Double-Matching Problems The Transformation-Q Approach to the Design of	284
	0.4.5	Impedance-Matching Networks	291
8.5	8.5 THE DESIGN OF RLC IMPEDANCE-MATCHING NETWORKS		
REFE	RENCE	3S	317
SELE	CTED I	BIBLIOGRAPHY	318
СНА	PTER	9 MICROWAVE LUMPED ELEMENTS, DISTRIBUTE EQUIVALENTS, AND MICROSTRIP PARASITICS	E D
9.1	INTRO	ODUCTION	321
9.2	MICR	OWAVE RESISTORS	322
9.3		LIMITATIONS OF A SERIES TRANSMISSION LINE	
	USED	TO REPLACE A LUMPED ELEMENT	322
9.4	LUM	PED MICROWAVE INDUCTORS	325
9.5	LUMI	PED MICROWAVE CAPACITORS	331
9.6		RIBUTED EQUIVALENTS FOR SHUNT INDUCTORS CAPACITORS	333
9.7	A TD	ANGMICCION I DIE EQUINALENT POD A GVA O ÆTDIC	
9.1		ANSMISSION LINE EQUIVALENT FOR A SYMMETRIC PASS T-SECTION OR PI-SECTION	338
9.8		OSTRIP DISCONTINUITY EFFECTS AT THE LOWER OWAVE FREQUENCIES	345
9.9		MPENSATION TECHNIQUE FOR MICROSTRIP ONTINUITIES	353
REFE	RENCE	S	356

	Contents	xiii
SE LE	CTED BIBLIOGRAPHY	357
СНА	PTER 10 THE DESIGN OF RADIO-FREQUENCY AND MICROWAVE AMPLIFIERS AND OSCILLATORS	
10.1	INTRODUCTION	359
10.2	STABILITY	362
	 10.2.1 Stability Circles on the Admittance Plane 10.2.2 Stability Circles on the Smith Chart 10.2.3 The Reflection Gain Approach 10.2.4 The Loop Gain Approach 10.2.5 Stabilization of a Two-Port with Shunt or Series Resistance 	364 368 371 374 380
10.3	TUNABILITY	383
10.4	CONTROLLING THE GAIN OF AN AMPLIFIER	384
	 10.4.1 Circles of Constant Mismatch for a Passive Problem 10.4.2 Constant Operating Power Gain Circles 10.4.3 Constant Available Power Gain Circles 10.4.4 Constant Transducer Power Gain Circles 	387 389 392 394
10.5	CONTROLLING THE NOISE FIGURE OF AN AMPLIFIER	396
10.6	CONTROLLING THE OUTPUT POWER OR THE EFFECTIVE OUTPUT POWER OF A TRANSISTOR	398
10.7	THE EQUIVALENT PASSIVE IMPEDANCE-MATCHING PROBLEM	399
	10.7.1 Constant Operating Power Gain Case10.7.2 Constant Available Power Gain Case10.7.3 Constant Noise Figure Case	401 403 404
10.8	DEVICE-MODIFICATION	405
10.9	DESIGNING CASCADE AMPLIFIERS	417
10.10	LOSSLESS FEEDBACK AMPLIFIERS	431
10.11	REFLECTION AMPLIFIERS	436

10.12	BALANG	CED AMPLIFIERS	44(
10.13	OSCILLA	ATOR DESIGN	441
	10.13.1	Estimation of the Compression Associated with the	
		Maximum Effective Output Power	451
	10.13.2	Derivation of the Equations for the T- and PI-Section	
		Feedback Components Required	453
	10.13.3	High Q Resonator Circuits	458
	10.13.4	Transforming the Impedance Presented by a Resonator	
		Network to That Required in the T- or PI-Section	
		Feedback Network	460
	10.13.5	Designing Varactor Circuits to Realize the Varactor-Type	
	10101	Reactance Required	462
	10.13.6	Considerations Applying to Oscillators with	
		Low Phase Noise	465
REFE	RENCES		465
SELEC	TED BIB	LIOGRAPHY	467
APPE	NDIX A		469
ABOU	T THE	AUTHOR	473
INDE	X		475