Air Conditioning Principles and Systems

AN ENERGY APPROACH

Edward G. Pita

CONTENTS

An Air Conditioning Fable xv

1	THE SCOPE AND USES OF AIR
	CONDITIONING 1

- 1.1 Scope of Air Conditioning 2

 Components of Air Condition:
- 1.2 Components of Air Conditioning Systems 3
- 1.3 All-Water (Hydronic) Air Conditioning Systems 4
- 1.4 All-Air Air Conditioning
 Systems 5
- 1.5 Human Comfort 7
- 1.6 Comfort Standards 8
- 1.7 The HVAC System as Part of the Building Construction Field 10
- 1.8 Designing the HVAC System 10
- 1.9 Installing the HVAC System 11
- 1.10 Operation, Maintenance, and Service of the HVAC System 12
- 1.11 Employment in the HVAC Industry 12
- 1.12 Description of Job Responsibilities 13
- 1.13 Energy Conservation and Computers 14

Review Questions 15 Problems 15

2 PHYSICAL PRINCIPLES 17

- 2.1 Units 18
- 2.2 Conversion of Units 18
- 2.3 U.S. and SI Units 19
- 2.4 Mass, Force, Weight, Density, and Specific Volume 19
- 2.5 Accuracy of Data 21
- 2.6 Pressure 21
- 2.7 Pressure of a Liquid Column 23
- 2.8 Work, Power, and Energy 26
- 2.9 Heat and Temperature 27
- 2.10 Enthalpy 28
- 2.11 The Energy Equation (First Law of Thermodynamics) 29
- 2.12 Liquids, Vapors, and Change of State 30
- 2.13 Saturated Property Tables 36
- 2.14 Refrigeration 36
- 2.15 Calculation of Sensible and Latent Heat Changes 37
- 2.16 Latent Heats of Fusion and Sublimation 40
- 2.17 The Ideal (Perfect) Gas Laws 40

2.18 Energy Utilization (Second Law of Thermodynamics) 41 Review Questions 42 Problems 43

3 HEATING LOADS 46

- 3.1 The Heating Load 46
- 3.2 Heat Transfer 47
- 3.3 Rate of Heat Transfer 48
- 3.4 Overall Thermal Resistance 51
- 3.5 Overall Heat Transfer Coefficient (U), 51
- 3.6 Heat Transfer Losses: Basement Walls and Floors 53
- 3.7 Heat Transfer Losses: Floor on Ground and Floor over Crawl Space 54
- 3.8 Infiltration and Ventilation Heat Loss 56
- 3.9 Design Conditions 59
- 3.10 Room Heat Loss and Room Heating Load 60
- 3.11 The Building Net Heating Load 61
- 3.12 System Heat Losses 62
- 3.13 Summary of Heating Load Calculation Procedures 63
- 3.14 Energy Conservation 66
 Review Questions 66
 Problems 67

4 FURNACES AND BOILERS 71

- 4.1 Warm Air Furnaces 71
- 4.2 Furnace Controls 74
- 4.3 Heating Boilers 75
- 4.4 Boiler Controls 79
- 4.5 Boiler and Furnace Draft 80
- 4.6 Fuels and Combustion 82
- 4.7 Gas and Oil Burners 88
- 4.8 Flame Safety Controls 92
- 4.9 Boiler Applications 92
- 4.10 Boiler Rating and Selection 94
- 4.11 Boiler Installation 98
- 4.12 Energy Use and Efficiency in Boilers and Furnaces 98

4.13 Energy Conservation 100
Review Questions 100
Problems 101
Computer Solution Problems 101

5 HYDRONIC PIPING SYSTEMS AND TERMINAL UNITS 102

- 5.1 Piping Arrangements 102
- 5.2 Series Loop 102
- 5.3 One-Pipe Main 104
- 5.4 Two-Pipe Direct Return 104
- 5.5 Two-Pipe Reverse Return 105
- 5.6 Combination Arrangements 106
- 5.7 Three-Pipe System 106
- 5.8 Four-Pipe System 107
- 5.9 Hydronic Terminal Units 107
- 5.10 Radiators 108
- 5.11 Convectors 108
- 5.12 Baseboard 109
- 5.13 Fin-Tube 109
- 5.14 Radiant Panels 110
- 5.15 Unit Heaters 110
- 5.16 Fan-Coil Units 111
- 5.17 Induction Units 112
- 5.18 System Water Temperatures and Flow Rates 113
- 5.19 Selection of Terminal Units 114
- 5.20 System Design Procedure 115
 Review Questions 118
 Problems 118
 Computer Solution Problems 119

6 COOLING LOAD CALCULATIONS 120

- 6.1 The Cooling Load 120
- 6.2 Cooling Load Calculation Procedures 120
- 6.3 Room Heat Gains 122
- 6.4 Conduction Through Exterior Structure 123
- 6.5 Conduction Through Interior Structure 130
- 6.6 Solar Radiation Through Glass 130
- 6.7 Design Conditions 137
- **6.8 Lighting 137**

- 6.9 People 139
- 6.10 Equipment and Appliances, 140
- 6.11 Infiltration 140
- 6.12 Room Cooling Load 144
- 6.13 Room Peak Cooling Load 145
- 6.14 Building Peak Cooling Load 145
- 6.15 Cooling Coil Load 146
- 6.16 Ventilation 146
- 6.17 Heat Gain to Ducts 147
- 6.18 Fan and Pump Heat 148
- 6.19 Duct Air Leakage 149
- 6.20 Supply Air Conditions 149
- 6.21 Summary of Commercial Cooling
 Load Calculation Procedures 149

Residential Cooling Loads 152

- 6.22 Cooling Load from Heat Gain Through Structure 152
- 6.23 Cooling Load from Heat Gain Through Windows 153
- 6.24 People and Appliances 154
- 6.25 Infiltration and Ventilation 154
- 6.26 Room, Building, and Air Conditioning Equipment Loads 156
- 6.27 Summary of Residential Cooling Load Calculation Procedures 158
- 6.28 Energy Conservation 160
 Problems 160
 Computer Solution Problems 162

7 PSYCHROMETRICS 164

- 7.1 Properties of Air 164
- 7.2 Determining Air Properties 165
- 7.3 The Psychrometric Chart 168
- 7.4 Locating the Air Condition on the Chart 168
- 7.5 Condensation on Surfaces 172

Air Conditioning Processes 173

- 7.6 Process Lines on the Psychrometric Chart 173
- 7.7 Sensible Heat Change ProcessCalculations (Sensible Heating and Cooling) 174

- 7.8 Latent Heat Change Process
 Calculations (Humidifying and
 Dehumidifying) 177
- 7.9 Combined Sensible and Latent Process Calculations 179
- 7.10 The Evaporative Cooling Process and the Wet Bulb Temperature 181
- 7.11 The Air Mixing Process 182

Psychrometric Analysis of the Air Conditioning System 184

- 7.12 Determining Supply Air Conditions 184
- 7.13 Sensible Heat Ratio 185
- 7.14 The RSHR or Condition Line 186
- 7.15 Coil Process Line 188
- 7.16 The Complete Psychrometric Analysis 189
- 7.17 The Contact Factor and Bypass Factor 191
- 7.18 The Effective Surface Temperature 191
- 7.19 Reheat 193
- 7.20 Part Load Operation and Control 194
- 7.21 Fan Heat Gains 195Problems 195Computer Solution Problems 198

8 FLUID FLOW IN PIPING AND DUCTS 199

- 8.1 The Continuity Equation 199
- 8.2 The Flow Energy Equation 201
- 8.3 Pressure Loss in Closed and Open Systems 203
- 8.4 Total, Static, and Velocity Pressure 204
- 8.5 Conversion of Velocity Pressure to Static Pressure (Static Regain) 206
- 8.6 Pressure Loss from Friction in Piping and Ducts 207
- 8.7 Friction Loss from Water Flow in Pipes 208
- 8.8 Pressure Loss in Pipe Fittings 212
- 8.9 Piping System Pressure Drop 213
- 8.10 System Pipe Sizing 216
- 8.11 Friction Loss from Air Flow in Ducts 218

8.12 Aspect Ratio 220

	8.15	Pressure Loss at Fan Inlet and Outlet 232	
9		NG, VALVES, DUCTS,	
		INSULATION 243	
	9.1	Piping Materials and	
	9.2	Specifications 243	
	9.2	Fittings and Joining Methods for Steel Pipe 246	
	9.3	Fittings and Joining Methods for	
	7.5	Copper Tubing 247	
	9.4		11
	9.5		
		Valves 248	
	.9.6		
	9.7		
	9.8	1 1	
	9.9		
		Pipe Insulation 254	
	9.11		
		Duct Construction 255	
	9.13		
		Review Questions 257	
10		AND AIR DISTRIBUTION CES 258	
	10.1	Fan Types 258	
	10.2		
	10.3	Fan Selection 260	
	10.4		
	10.5	System Characteristics 265	
	10.6	Fan-System Interaction 266	
	10.7	System Effect 267	12
	10.8	Selection of Optimum Fan	
	10.9	Conditions 267	
	10.9	Fan Laws 268	
	10.10	Construction and Arrangement 269 Installation 270	
	10.11	Energy Conservation 271	

Air Distribution Devices 272

- 10.13 Room Air Distribution 272
- 10.14 Air Patterns 272
- 10.15 Location 273
- 10.16 Types of Air Supply Devices 274
- 10.17 Applications 276
- 10.18 Selection 277
- 10.19 Accessories and Duct Connections 281
- 10.20 Return Air Devices 282
- 10.21 Sound 282
- 10.22 Sound Control 283
 Review Questions 285
 Problems 285
 Computer Solution Problems 286

11 CENTRIFUGAL PUMPS, EXPANSION TANKS, AND VENTING 287

- 11.1 Types of Pumps 287
- 11.2 Principles of Operation 287
- 11.3 Pump Characteristics 288
- 11.4 Pump Selection 291
- 11.5 System Characteristics 293
- 11.6 System Characteristics and Pump Characteristics 293
- 11.7 Pump Similarity Laws 295
- 11.8 Pump Construction 295
- 11.9 Net Positive Suction Head 299
- 11.10 The Expansion Tank 299
- 11.11 System Pressure Control 300
- 11.12 Compression Tank Size 302
- 11.13 Air Control and Venting 303
- 11.14 Energy Conservation 304
 Review Questions 304
 Problems 305
 Computer Solution Problems 305

12 AIR CONDITIONING SYSTEMS AND EQUIPMENT 306

- 12.1 System Classifications 306
- 12.2 Zones and Systems 307
- 12.3 Single Zone System 307
- 12.4 Reheat System 309
- 12.5 Multizone System 310

	12.6	Dual Duct System 311		13.15	Packaged Refrigeration
	12.7	Variable Air Volume (VAV)			Equipment 342
		System 313		13.16	Selection 342
	12.8	All-Water Systems 315			Energy Efficiency 346
	12.9	Air-Water Systems 315		13.18	Installation of Refrigeration
	12.10	Unitary versus Central Systems 316			Chillers 348
	12.11	Room Units 316		13.19	Cooling Towers 348
	12.12	Unitary Air Conditioners 317		Aheo	rption Refrigeration
	12.13	Rooftop Units 318			m 350
	12.14	Air Handling Units 318		-	
	12.15	Cooling and Heating Coils 319			Principles 350
	12.16	Coil Selection 320			Construction and Performance 352
	12.17	Air Cleaning Devices (Filters) 321			Special Applications 353
	12.18	Methods of Dust Removal 321			Capacity Control 354
	12.19	Methods of Testing Filters 322			Crystallization 354
	12.20	Types of Air Cleaners 323		13.25	Installation 354
		Selection of Air Cleaners 324		, The - 11	land Brown 255
		Indoor Air Quality 325		ine n	leat Pump 355
	12.23	Energy Requirements of Different		13.26	Principles 355
		Types of Air Conditioning		13.27	Energy Efficiency 355
	•	Systems 326		13.28	Selection of Heat Pumps—
	12.24	Energy Conservation 330			The Balance Point 357
		Review Questions 330		13.29	Solar Energy-Heat Pump
		Problems 330			Application 360
				13.30	Refrigerants 360
REFRIGERATION SYSTEMS				13.31	Ozone Depletion 361
AND EQUIPMENT 332				13.32	Refrigerant Venting and Reuse 362
				13.33	Global Warming Potential 363
Vapor Compression			13.34	Water Treatment 363	
	Hetrig	geration System 333		13.35	Energy Conservation in
	13.1	Principles 333			Refrigeration 363
	13.2	Equipment 334			Review Questions 364
	13.3	Evaporators 334			Problems 364
	13.4	Types of Compressors 335			
	13.5	Reciprocating Compressor 335	14	AUTO	MATIC CONTROLS 365
	13.6	Rotary Compressor 336		14.1	Understanding Automatic
	13.7	Screw (Helical Rotary)			Controls 366
		Compressor 336		14.2	Purposes of Controls 366
	13.8	Scroll Compressor 337		14.3	The Control System 366
	13.9	Centrifugal Compressor 337		14.4	Closed-Loop (Feedback) and Open-
	13.10	Capacity Control of Compressors 338			Loop Control Systems 368
	13.11	Prime Movers 338		14.5	Energy Sources 369
	13.12	Condensers 339		14.6	Component Control Diagram 369
	13.13	Flow Control Devices 340		14.7	Types of Control Action 370
	13.14	Safety Controls 341		14.8	Controllers 373

13

15

14.9	Controlled Devices 376		15.21	System Design 410
14.10	Choice of Control Systems 377		15.22	Controls 410
14.11	Control from Space Temperature 378		15.23	Installation 411
14.12	Control from Outdoor Air 379		15.24	Operation and Maintenance 411
14.13	Control from Heating/Cooling		15.25	-
	Medium 381			Problems 413
	Humidity Control 382			
14.15	Complete Control Systems 382	16	INSTI	RUMENTATION, TESTING,
	Review Questions 385		AND	BALANCING 420
	Problems 385		16.1	Definitions 421
			16.2	Instrumentation 421
ENEF	RGY UTILIZATION AND		16.3	Temperature 421
CONS	SERVATION 387		16.4	Pressure 423
15.1	Energy Standards and Codes 388		16.5	Velocity 424
15.2	Sources of Energy 391		16.6	Flow Rates 426
15.3	Principles of Energy Utilization 392		16.7	Heat Flow 428
15.4	Measuring Energy Utilization in		16.8	Humidity 428
	Power-Producing Equipment		16.9	Equipment Speed 429
	(Efficiency) 393		16.10	Electrical Energy 429
15.5	Measuring Energy Conservation in		16.11	Testing and Balancing 429
•	Cooling Equipment—The COP and		16.12	Preparation for Air System
	EER 395			Balancing 429
15.6	Measuring Energy Conservation in		16.13	The Air System Balancing
	the Heat Pump 397			Process 431
15.7	Measuring Energy Conservation in		16.14	Preparation for Water System
	Heating Equipment 397			Balancing 431
15.8	Measuring Energy Conservation in		16.15	
	Pumps and Fans 398			Process 432
15.9	Measuring Energy Use in Existing			Energy Conservation 433
	Building HVAC Systems 399		16.17	
15.10	Measuring Energy Use in New			Review Questions 433
	Building HVAC Systems 399			Problems 433
15.11	The Degree Day Method 400	4-		
15.12	Other Energy Measuring	17		NING AND DESIGNING THE
	Methods 402		HVAC	SYSTEM 435
15.13	Air-to-Air Heat Recovery 403		17.1	Procedures for Designing a Hydronic
15.14	Refrigeration Cycle Heat			System 435
	Recovery 405		17.2	Calculating the Heating Load 437
15.15	Thermal Storage 406		17.3	Type and Location of Terminal
15.16	Light Heat Recovery 407			Units 440
15.17	Total Energy Systems 407		17.4	Piping System Arrangement 440
15.18	Energy Conservation		17.5	Flow Rates and Temperatures 440
	Methods 408		17.6	Selection of Terminal Units 442
15.19	Building Construction 409		17.7	Pipe Sizing 443
15.20	Design Criteria 409		17.8	Pining or Duct I avout 443

17.9	Pump Selection 444	Bibliograp	hy 485	
17.10	Boiler Selection 444			
17.11	Compression Tank 446	Appendix	487	
17.12	Accessories 446	11		
17.13	Controls 447	Table A 1	Abbreviations and Symbols 487	
17.14	Plans and Specifications 447		Unit Equivalents (Conversion	
17.15	Energy Use and Conservation 448	14010 14.2	Factors) 489	
17.16	Procedures for Designing an All-Air	Table A 3	Properties of Saturated Steam and	
	System 448	1401071.5	Saturated Water 490	
17.17	Calculating the Cooling Load 448	Table A.4	Thermal Resistance R of Building	
17.18	Type of System 453	1401C A.4	and Insulating Materials 491	
17.19	Equipment and Duct Locations 453	Table A.5	Thermal Resistance R of Surface	
17.20	Duct Sizes 453	1401071.5	Air Films and Air Spaces 494	
17.21	Air Distribution Devices 455	Table A.6	Typical Building Roof and Wall	
17.22	Equipment 455	1401071.0	Construction Cross-Sections and	
17.23	Accessories 456		Overall Heat Transfer Coefficients	
17.24	•	1	495	
17.25	•	Table A.7	Overall Heat Transfer Coefficient	
17.26	Energy Conservation 458	Tuble 11.7	U for Building Construction	
	Problems 458		Components 498	
		Table A.8	Overall Heat Transfer Coefficient	
SOLAR HEATING AND		14.514 11.0	U for Glass 500	
COOL	JING SYSTEMS 459	Table A.9	Outdoor Heating and Cooling	
18.1	Solar Collectors 459		Design Conditions—United	
18.2	Storage and Distribution Systems 461		States, Canada, and World	
18.3	Types of Solar Heating Systems 462		Locations 501	
18.4	Solar Cooling Systems 463	Figure A.1	Room Heating Load Calculations	
18.5	Solar Radiation Energy 464	_	Form 509	
18.6	Insolation Tables 465	Figure A.2	Building Heating Load	
18.7	Clearness Factor 466		Calculations Form 510	
18.8	Orientation and Tilt Angles 471	Figure A.3	Commercial Cooling Load	
18.9	Sunshine Hours 472		Calculations Form 511	
18.10	Collector Performance 472	Figure A.4	Residential Cooling Load	
18.11	Sizing the Collector 475		Calculations Form 512	
18.12	Economic Analysis 476	Figure A.5	Psychrometric Chart, U.S. Units	
18.13	Storage System Sizing 477		513	
18.14	Approximate System Design	Figure A.6	Psychrometric Chart, SI Units	
	Data 480		514	
18.15	Passive Solar Heating Systems 481			
	Problems 481	Index 515		

18