Introduction to the Electron Theory of Metals Uichiro Mizutani

Contents

	Preface	<i>page</i> xi
1	Introduction	1
1.1	What is the electron theory of metals?	1
1.2	Historical survey of the electron theory of metals	3
1.3	Outline of this book	8
2	Bonding styles and the free-electron model	10
2.1	Prologue	10
2.2	Concept of an energy band	10
2.3	Bonding styles	13
2.4	Motion of an electron in free space	16
2.5	Free electron under the periodic boundary condition	18
2.6	Free electron in a box	20
2.7	Construction of the Fermi sphere	21
	Exercises	28
3	Electrons in a metal at finite temperatures	29
3.1	Prologue	29
3.2	Fermi-Dirac distribution function (I)	29
3.3	Fermi-Dirac distribution function (II)	34
3.4	Electronic specific heat	37
3.5	Low-temperature specific heat measurement	40
	Pauli paramagnetism	44
3.7	Thermionic emission	50
	Exercise	53
4	Periodic lattice, and lattice vibrations in crystals	54
4.1	Prologue	54
4.2	Periodic structure and reciprocal lattice vectors	54
4.3	Periodic lattice in real space and in reciprocal space	57
44	Lattice vibrations in one-dimensional monatomic lattice	64

vi Contents

4.5	Lattice vibrations in a crystal	66
4.6	Lattice waves and phonons	69
4.7	Bose-Einstein distribution function	69
4.8	Lattice specific heat	72
4.9	Acoustic phonons and optical phonons	77
4.10	Lattice vibration spectrum and Debye temperature	80
4.11	Conduction electrons, set of lattice planes and phonons	81
	Exercises	83
5	Conduction electrons in a periodic potential	86
5.1	Prologue	86
5.2	Cosine-type periodic potential	86
5.3	Bloch theorem	88
5.4	Kronig-Penney model	93
5.5	Nearly-free-electron model	97
5.6	Energy gap and diffraction phenomena	103
5.7	Brillouin zone of one- and two-dimensional periodic lattices	105
5.8	Brillouin zone of bcc and fcc lattices	106
5.9	Brillouin zone of hcp lattice	113
	Fermi surface—Brillouin zone interaction	116
5.11	Extended, reduced and periodic zone schemes	121
	Exercises	125
6	Electronic structure of representative elements	126
	Prologue	126
6.2	Elements in the periodic table	126
6.3	Alkali metals	126
6.4	Noble metals	130
	Divalent metals	132
	Trivalent metals	135
	Tetravalent metals and graphite	137
	Pentavalent semimetals	141
6.9	Semiconducting elements without and with dopants	143
7	Experimental techniques and principles of electronic	
	structure-related phenomena	148
	Prologue	148
	de Haas-van Alphen effect	148
	Positron annihilation	155
	Compton scattering effect	160
	Photoemission spectroscopy	162
	Inverse photoemission spectroscopy	169
7.7	Angular-resolved photoemission spectroscopy (ARPES)	172

	Contents	vii
7.8	Soft x-ray spectroscopy	176
	Electron-energy-loss spectroscopy (EELS)	181
	Optical reflection and absorption spectra	184
	Exercises	188
8	Electronic structure calculations	190
8.1	Prologue	190
8.2	One-electron approximation	190
8.3	Local density functional method	195
8.4	Band theories in a perfect crystal	199
8.5	Tight-binding method	200
8.6	Orthogonalized plane wave method	203
8.7	Pseudopotential method	204
8.8	Augmented plane wave method	207
8.9	Korringa-Kohn-Rostoker method	211
8.10	LMTO	215
	Exercises	223
9	Electronic structure of alloys	224
9.1	Prologue	224
9.2	Impurity effect in a metal	224
9.3	Electron scattering by impurity atoms and the Linde law	226
9.4	Phase diagram in Au-Cu alloy system and the Nordheim law	228
9.5	Hume-Rothery rule	232
9.6	Electronic structure in Hume-Rothery alloys	235
9.7	Stability of Hume-Rothery alloys	240
9.8	Band theories for binary alloys	245
10	Electron transport properties in periodic systems (I)	249
10.1	Prologue	249
10.2	The Drude theory for electrical conductivity	249
10.3	Motion of electrons in a crystal: (I) – wave packet of	
	electrons	254
10.4	Motion of electrons in a crystal: (II)	257
10.5	Electrons and holes	261
10.6	Boltzmann transport equation	264
10.7	Electrical conductivity formula	267
10.8	Impurity scattering and phonon scattering	270
10.9	Band structure effect on the electron transport equation	271
10.10	Ziman theory for the electrical resistivity	275
10.11	Electrical resistivity due to electron-phonon interaction	280
10.12	Bloch-Grüneisen law	284
	Exercises	291

viii Contents

11	Electron transport properties in periodic systems (II)	29 3
11.1	Prologue	293
11.2	Thermal conductivity	293
11.3	Electronic thermal conductivity	296
11.4	Wiedemann-Franz law and Lorenz number	299
11.5	Thermoelectric power	302
	Phonon drag effect	307
11.7	Thermoelectric power in metals and semiconductors	309
11.8	Hall effect and magnetoresistance	312
	Interaction of electromagnetic wave with metals (I)	317
11.10	Interaction of electromagnetic wave with metals (II)	321
11.11	Reflectance measurement	324
11.12	Reflectance spectrum and optical conductivity	325
11.13	Kubo formula	328
	Exercises	333
12	Superconductivity	334
12.1	Prologue	334
12.2	Meissner effect	335
	London theory	338
12.4	Thermodynamics of a superconductor	341
12.5	Ordering of the momentum	343
12.6	Ginzburg-Landau theory	344
12.7	Specific heat in the superconducting state	346
12.8	Energy gap in the superconducting state	347
	Isotope effect	347
12.10	Mechanism of superconductivity-Fröhlich theory	349
12.11	Formation of the Cooper pair	351
12.12	The superconducting ground state and excited states in the	
	BCS theory	353
	Secret of zero resistance	358
12.14	Magnetic flux quantization in a superconducting	
	cylinder	359
	Type-I and type-II superconductors	360
	Ideal type-II superconductors	362
	Critical current density in type-II superconductors	364
	Josephson effect	368
12.19	Superconducting quantum interference device (SQUID)	
	magnetometer	373
	High- $T_{\rm c}$ superconductors	376
	Exercises	382

Contents	ix

13	iviagnetism, electronic structure and electron transport	
	properties in magnetic metals	383
13.1	Prologue	383
13.2	Classification of crystalline metals in terms of magnetism	383
13.3	Orbital and spin angular momenta of a free atom and of	
	atoms in a solid	386
13.4	Localized electron model and spin wave theory	390
13.5	Itinerant electron model	395
13.6	Electron transport in ferromagnetic metals	400
13.7	Electronic structure of magnetically dilute alloys	403
13.8	Scattering of electrons in a magnetically dilute alloy – "partial	
	wave method"	405
13.9	Scattering of electrons by magnetic impurities	410
13.10	s-d interaction and Kondo effect	414
13.11	RKKY interaction and spin-glass	418
13.12	Magnetoresistance in ferromagnetic metals	420
13.13	Hall effect in magnetic metals	428
	Exercises	431
14	Electronic structure of strongly correlated electron systems	432
14.1	Prologue	432
14.2	Fermi liquid theory and quasiparticle	433
14.3	Electronic states of hydrogen molecule and the Heitler-London	
	approximation	434
14.4	Failure of the one-electron approximation in a strongly	
	correlated electron system	438
14.5	Hubbard model and electronic structure of a strongly	
	correlated electron system	44 1
14.6	Electronic structure of 3d-transition metal oxides	444
14.7	High- $T_{\rm c}$ cuprate superconductors	447
	Exercise	450
15	Electronic structure and electron transport properties of liquid	
	metals, amorphous metals and quasicrystals	451
15.1	Prologue	451
15.2	Atomic structure of liquid and amorphous metals	452
	Preparation of amorphous alloys	462
	Thermal properties of amorphous alloys	464
	Classification of amorphous alloys	466
	Electronic structure of amorphous alloys	467
15.7	Electron transport properties of liquid and amorphous	
	metals	472

X Contents

15.8	Electron transport theories in a disordered system	474
15.8.1	Ziman theory for simple liquid metals in group (V)	47:
15.8.2	Baym-Meisel-Cote theory for amorphous alloys in	
	group (V)	479
15.8.3	Mott s-d scattering model	482
	Anderson localization theory	483
15.8.5	Variable-range hopping model	486
15.9	Electron conduction mechanism in amorphous alloys	488
15.10	Structure and preparation method of quasicrystals	494
15.11	Quasicrystals and approximants	495
15.12	Electronic structure of quasicrystals	500
15.13	Electron transport properties in quasicrystals and	
	approximants	502
	Electron conduction mechanism in the pseudogap systems	507
5.14.1	Mott conductivity formula for the pseudogap system	507
	Family of quasicrystals and their approximants	509
5.14.3	Family of amorphous alloys in group (IV)	510
5.14.4	Family of "unusual" pseudogap systems	512
	Exercises	515
	Appendix 1 Values of selected physical constants	516
	Principal symbols (by chapter)	517
	Hints and answers	539
	References	569
	Materials index	577
	Subject index	579