OPTIMAL INVENTORY MODELING OF SYSTEMS

Multi-Echelon Techniques Second Edition

Craig C. Sherbrooke

Kluwer's INTERNATIONAL SERIES

Contents

Dedicatio	n	v
List of Fig	gures	xv
List of Ta	bles	xvii
List of Va	ariables	xix
Preface		xxiii
Acknowle	edgements	xxix
1 INTRO	DUCTION	1
1.1	CHAPTER OVERVIEW	1
1.2	THE SYSTEM APPROACH	2
1.3	THE ITEM APPROACH	3
1.4	REPAIRABLE VS. CONSUMABLE ITEMS	4
1.5	"PHYSICS" OF THE PROBLEM	6
1.6	MULTI-ITEM OPTIMIZATION	7
1.7	MULTI-ECHELON OPTIMIZATION	8
1.8	MULTI-INDENTURE OPTIMIZATION	9
1.9	FIELD TEST EXPERIENCE	10
1.10	THE ITEM APPROACH REVISITED	13
1.11	THE SYSTEM APPROACH REVISITED	14
1.12	SUMMARY	17
1 13	PROBLEMS	19

2 S	INGLE	-SITE INVENTORY MODEL FOR REPAIRABLE ITEMS	19
	2.1	CHAPTER OVERVIEW	19
	2.2	MEAN AND VARIANCE	20
	2.3	POISSON DISTRIBUTION AND NOTATION	21
	2.4	PALM'S THEOREM	22
	2.5	JUSTIFICATION OF INDEPENDENT REPAIR TIMES AND	
		CONSTANT DEMAND	22
	2.6	STOCK LEVEL	24
	2.7	ITEM PERFORMANCE MEASURES	25
	2.8	SYSTEM PERFORMANCE MEASURES	29
	2.9	SINGLE-SITE MODEL	29
	2.10	MARGINAL ANALYSIS	30
	2.11	CONVEXITY	33
	2.12	MATHEMATICAL SOLUTION OF MARGINAL ANALYSIS	34
	2.13	SEPARABILITY	37
	2.14	AVAILABILITY	37
	2.15	SUMMARY	41
	2.16	PROBLEMS	42
3 N	IETRIC	: A MULTI-ECHELON MODEL	45
	3.1	CHAPTER OVERVIEW	45
	3.2	METRIC MODEL ASSUMPTIONS	46
	3.3	METRIC THEORY	48
	3.4	NUMERICAL EXAMPLE	49
	3.5	CONVEXIFICATION	52
	3.6	SUMMARY OF THE METRIC OPTIMIZATION PROCEDURE	54
	3.7	Availability	55
	3.8	SUMMARY	56
	3.9	PROBLEMS	56
4 D	EMAN	D PROCESSES AND DEMAND PREDICTION	59
	4.1	CHAPTER OVERVIEW	59
	4.2	Poisson Process	61
	4.3	NEGATIVE BINOMIAL DISTRIBUTION	62
	4.4	MULTI-INDENTURE PROBLEM	65
	4.5	MULTI-INDENTURE EXAMPLE	67
	4.6	VARIANCE OF THE NUMBER OF UNITS IN THE PIPELINE	67
	4.7	MULTI-INDENTURE EXAMPLE REVISITED	71
	4.8	DEMAND RATES THAT VARY WITH TIME	72
	4.9	BAYESIAN ANALYSIS	73
	4.10	OBJECTIVE BAYES	75

Contents ix

	4.11	BAYESIAN ANALYSIS IN THE CASE OF INITIAL ESTIMATE	
		DATA	80
	4.12	JAMES-STEIN ESTIMATION	81
	4.13	JAMES-STEIN ESTIMATION EXPERIMENT	83
	4.14	COMPARISON OF BAYES AND JAMES-STEIN	85
	4.15	DEMAND PREDICTION EXPERIMENT DESIGN	85
	4.16	DEMAND PREDICTION EXPERIMENT RESULTS	87
	4.17	RANDOM FAILURE VERSUS WEAR-OUT PROCESSES	89
	4.18	GOODNESS-OF-FIT TESTS	92
	4.19	SUMMARY	95
	4.20	PROBLEMS	96
5 V	'ARI-M	ETRIC: A MULTI-ECHELON, MULTI-INDENTURE MO	DEL
			101
	5.1	CHAPTER OVERVIEW	101
	5.2	MATHEMATICAL PRELIMINARY: MULTI-ECHELON THEORY	<i>(</i> 103
	5.3	DEFINITIONS	106
	5.4	DEMAND RATES	107
	5.5	MEAN AND VARIANCE FOR THE NUMBER OF LRUS IN	
		DEPOT REPAIR	108
	5.6	MEAN AND VARIANCE FOR THE NUMBER OF SRUS IN	
		BASE REPAIR OR RESUPPLY	109
	5.7	MEAN AND VARIANCE FOR THE NUMBER OF LRUS IN	
		BASE REPAIR OR RESUPPLY	110
	5.8	AVAILABILITY	111
	5.9	OPTIMIZATION	112
	5.10	GENERALIZATION OF THE RESUPPLY TIME ASSUMPTIONS	112
	5.11	GENERALIZATION OF THE POISSON DEMAND ASSUMPTION	113
	5.12	COMMON ITEMS	114
	5.13	CONSUMABLE AND PARTIALLY REPAIRABLE ITEMS	114
	5.14	NUMERICAL EXAMPLE	120
	5.15	ITEM CRITICALITY DIFFERENCES	122
	5.16	AVAILABILITY DEGRADATION DUE TO MAINTENANCE	123
	5.17	AVAILABILITY FORMULA UNDERESTIMATES FOR AIRCRAFT	
	5.18	SUMMARY	125
	5.19	PROBLEMS	125
6 N		ECHELON, MULTI-INDENTURE MODELS WITH PERIO	ODIC
	SUPP	LY AND REDUNDANCY	129
	6.1	SPACE STATION DESCRIPTION	129
	6.2	CHAPTER OVERVIEW	130
	6.3	MAINTENANCE CONCEPT	131
	64	AVAILABILITY AS A FUNCTION OF TIME DURING THE CYCL	F132

(6.5	PROBABILITY DISTRIBUTION OF BACKORDERS FOR AN ORU	J133
(6.6	PROBABILITY DISTRIBUTION FOR NUMBER OF	
		SYSTEMS DOWN FOR AN ORU	136
(6.7	PROBABILITY DISTRIBUTION FOR NUMBER OF	
		Systems Down	139
(6.8	AVAILABILITY	140
(6.9	NUMERICAL EXAMPLE FOR ONE ORU	141
	6.10	OPTIMIZATION	142
(6.11	MULTIPLE RESOURCE CONSTRAINTS	143
(6.12	REDUNDANCY BLOCK DIAGRAMS	145
	6.13	NUMERICAL EXAMPLES	147
(6.14	OTHER REDUNDANCY CONFIGURATIONS WITH 50%	
		ORUS OPERATING	153
	6.15	SUMMARY OF THE THEORY	156
(6.16	APPLICATION OF THE THEORY	158
(6.17	PROBLEMS	159
7 SP	ECIAL	TOPICS IN PERIODIC SUPPLY	163
,	7.1	CHAPTER OVERVIEW	163
•	7.2	AVAILABILITY OVER DIFFERENT CYCLE LENGTHS	164
•	7.3	AVAILABILITY DEGRADATION DUE TO REMOVE/REPLACE	
		IN ORBIT	165
	7.4	FAILURES DUE TO WEAR OUT	167
•	7.5	NUMERICAL EXAMPLE	170
	7.6	MULTIPLE WEAR OUT FAILURES AT ONE LOCATION DURIN	G
		A CYCLE	172
•	7.7	COMMON ITEMS	177
	7.8	CONDEMNATIONS	178
•	7.9	DYNAMIC CALCULATIONS	179
•	7.10	SUMMARY	179
	7.11	PROBLEMS	180
8 M	ODELI	ING OF CANNIBALIZATION	181
;	8.1	CHAPTER OVERVIEW	181
;	8.2	SINGLE SITE MODEL	183
	8.3	MULTI-INDENTURE MODEL	186
	8.4	OPTIMIZATION OF AVAILABILITY	188
,	8.5	COMPARISON OF OBJECTIVE FUNCTIONS FOR	
		CANNIBALIZATION	190
	8.6	GENERALIZATIONS	192
	8.7	DYNA-METRIC AND THE AIRCRAFT SUSTAINABILITY	
		MODEL	194

Contents xi

	8.8	DRIVE - DISTRIBUTION AND REPAIR IN VARIABLE	
		ENVIRONMENTS	195
	8.9	PURPOSE OF DRIVE	195
	8.10	MODEL ASSUMPTIONS WITH DRIVE	197
	8.11	IMPLEMENTATION PROBLEMS WITH DRIVE	198
	8.12	DISTRIBUTION ALGORITHM FOR DRIVE	200
	8.13	FIELD TEST RESULTS FOR DRIVE	201
	8.14	OVERDRIVE - SEPARATE DISTRIBUTION & REPAIR MOD	DELS
			202
	8.15	CURRENT STATUS OF DRIVE	206
	8.16	Summary	207
	8.17	PROBLEMS	208
9 A	PPLIC	CATIONS	211
	9.1	Chapter Overview	211
	9.2	AIRLINE APPLICATIONS	212
	9.3	REDISTRIBUTION AND SALE OF ASSETS	213
	9.4	PERIODIC RESUPPLY	213
	9.5	NO RESUPPLY: FLYAWAY KITS	214
	9.6	ITEMS THAT ARE SOMETIMES REPAIRED-IN-PLACE	215
	9.7	CONTRACTOR REPAIR	216
	9.8	PROBABILITY DISTRIBUTION OF DELAY TIME	216
	9.9	SITES THAT ARE BOTH OPERATING AND SUPPORT	218
	9.10	LARGE SYSTEMS WHERE INDENTURE INFORMATION MAY BE LACKING	218
	9.11	SYSTEMS COMPOSED OF MULTIPLE SUB-SYSTEMS	219
	9.12	ITEMS WITH LIMITED INTERCHANGEABILITY AND	
		SUBSTITUTABILITY	220
	9.13	REDUNDANCY	220
	9.14	UNFILLED DEMAND MAY NOT BE A BACKORDER	221
	9.15	SUMMARY	221
10	IMPLI	EMENTATION ISSUES	223
	10.1	CHAPTER OVERVIEW	223
	10.2	COMPARISON OF VARI-METRIC WITH OTHER	
		STOCKAGE POLICIES	225
	10.3	USE OF STANDARDS VERSUS MEASURED QUANTITIES	225
	10.4	ROBUST ESTIMATION	226
	10.5	ASSESSMENT OF ALTERNATIVE SUPPORT POLICIES	227
	10.6	MODEL IMPLEMENTATION - AIR FORCE	229
	10.7	MODEL IMPLEMENTATION - ARMY	230
	10.8	MODEL IMPLEMENTATION - NAVY	231
	10.9	MODEL IMPLEMENTATION – COAST GUARD	231

	10.10	MODEL IMPLEMENTATION - WORLDWIDE	232
	10.11	MODEL HIERARCHIES	232
	10.12	SYSTEM APPROACH REVISITED ONE MORE TIME	234
	10.13	PROBLEMS	235
App	endix A	A PALM'S THEOREM	237
	A.1	APPENDIX OVERVIEW	237
	A.2	PRELIMINARY MATHEMATICS	238
	A.3	PROOF OF PALM'S THEOREM	239
	A .4	EXTENSION OF PALM'S THEOREM TO FINITE POPULATIONS	
	A.5	DYNAMIC FORM OF PALM'S THEOREM	241
	A .6	PROBLEMS	242
Anr	nendix l	B MULTI-ECHELON SYSTEMS WITH LATERAL SUPP	ľY
1-1	Jones .		245
	B.1	APPENDIX OVERVIEW	245
	B.2	BACKGROUND	246
	B.3	SIMULATION DESCRIPTION	247
	B.4	PARAMETER VALUES	249
	B.5	DEPOT-REPAIRABLE-ONLY ITEMS	250
	B.6	BASE-REPAIRABLE ITEMS	257
	B.7	NUMBER OF LATERAL SHIPMENTS	258
	B.8	SUMMARY	258
App	pendix (C DEMAND PREDICTION STUDIES	261
• •	C.1	BACKGROUND	261
	C.2	APPENDIX OVERVIEW	263
	C.3	DESCRIPTION OF THE DEMAND PREDICTION EXPERIMENT	264
	C.4	RESULTS OF THE DEMAND PREDICTION EXPERIMENT FOR	
		C-5 AIRFRAME	269
	C.5	RESULTS OF THE DEMAND PREDICTION EXPERIMENT FOR	
		A-10 Airframe	274
	C.6	RESULTS OF THE F-16 DEMAND PREDICTION EXPERIMENT	275
	C.7	DEMAND PREDICTION FOR F-16 USING FLYING HOUR DATA	A276
	C.8	CORRELATIONS	281
	C.9	SMALLER SMOOTHING CONSTANT FOR LOW-DEMAND	
		ITEMS	285
	C.10	SUMMARY	286
Anı	pendix]	D PREDICTING WARTIME DEMAND FOR AIRCRAFT	Γ
1	SPAR		291
	D.1		291
		DESERT STORM EXPERIENCE	292

Contents		xiii
D.3	LITERATURE REVIEW	292
D.4	PROPOSAL FOR A CONTROLLED EXPERIMENT	293
D.5	Data Analysis – F-15 C/D Aircraft	294
D.6	ANALYSIS OF OTHER DATA SETS	296
D.7	SUMMARY	298
Appendix	E VMETRIC MODEL IMPLEMENTATION	301
E.1	CHAPTER OVERVIEW	301
E.2	VMETRIC SCREENS	302

315

321

327

Appendix F DEMAND ANALYSIS SYSTEM

References

Index