STATISTICS A Gentle Introduction

Second Edition

Frederick L. Coolidge

Contents ____

Ackı	cknowledgments x	
1.	A Gentle Introduction	1
	How Much Math Do I Need to Do Statistics?	2
	The General Purpose of Statistics: Understanding the World	2
	Another Purpose of Statistics:	
	Making an Argument or a Decision	3
	What Is a Statistician?	3
	One Role: The Curious Detective	3
	Another Role: The Honest Attorney	4
	A Final Role: A Good Storyteller	5
	Liberal and Conservative Statisticians	6
	Descriptive and Inferential Statistics	7
	Experiments Are Designed to Test Theories and Hypotheses	8
	Oddball Theories	9
	Bad Science and Myths	10
	Eight Essential Questions of Any Survey or Study	11
	1. Who Was Surveyed or Studied?	11
	2. Why Did the People Participate in the Study?	12
•	3. Was There a Control Group and Did	
	the Control Group Receive a Placebo?	12
	4. How Many People Participated in the Study?	13
	5. How Were the Questions Worded to	
	the Participants in the Study?	14
	6. Was Causation Assumed From a Correlational Study?	15
	7. Who Paid for the Study?	16
	8. Was the Study Published in a	
	Peer-Reviewed Journal?	16
	On Making Samples Representative of the Population	17
	Experimental Design and Statistical Analysis as Controls	18
	The Language of Statistics	19
	On Conducting Scientific Experiments	20
	The Dependent Variable and Measurement	21
	Operational Definitions	21

	Measurement Error	21
	Measurement Scales: The Difference Between	
	Continuous and Discrete Variables	22
	Types of Measurement Scales	23
	Nominal Scales	23
	Ordinal Scales	23
	Interval Scales	24
	Ratio Scales	25
	Rounding Numbers and Rounding Error	25
	Statistical Symbols	26
	Summary	27
	History Trivia: Achenwall to Nightingale	28
	Key Terms, Symbols, and Definitions	29
	Chapter 1 Practice Problems	31
	Chapter 1 Test Questions	33
2.	Descriptive Statistics: Understanding Distributions of Numbers	37
	The Purpose of Graphs and Tables:	
	Making Arguments and Decisions	38
	How a Good Graph Stopped a Cholera Epidemic	39
	How Bad Graphs and Tables Contributed	
	to the Space Shuttle Challenger Explosion	40
	How a Poor PowerPoint Presentation	
	Contributed to the Space Shuttle Columbia Disaster	4 1
	A Summary of the Purpose of Graphs and Tables	41
	1. Document the Sources of	
	Statistical Data and Their Characteristics	42
	2. Make Appropriate Comparisons	42
	3. Demonstrate the Mechanisms of Cause and	
	Effect and Express the Mechanisms Quantitatively	43
	4. Recognize the Inherent Multivariate	
	Nature of Analytic Problems	43
	5. Inspect and Evaluate Alternative Hypotheses	44
	Graphical Cautions	44
	Frequency Distributions	46
	Shapes of Frequency Distributions	49
	Grouping Data Into Intervals	49
	Advice on Grouping Data Into Intervals	50
	1. Choose Interval Widths	
	That Reduce Your Data to 5 to 10 Intervals	50
	2. Choose the Size of Your Interval	
	Widths Based on Understandable Units,	
	for Example, Multiples of 5 or 10	52
	3. Make Sure That Your Chosen	
	Intervals Do Not Overlap	52
	The Cumulative Frequency Distribution	52

	Cumulative Percentages, Percentiles, and Quartiles	53
	Stem-and-Leaf Plot	54
	Nonnormal Frequency Distributions	55
	On the Importance of the Shapes of Distributions	56
	Additional Thoughts About Good Graphs	
	Versus Bad Graphs	57
	Low-Density Graphs	57
	Chart Junk	57
	Changing Scales Midstream (or Mid-Axis)	57
	Labeling the Graph Badly	58
	The Multicolored Graph	58
	PowerPoint Graphs and Presentations	58
	History Trivia: De Moivre to Tukey	59
	Key Terms and Definitions	60
	Chapter 2 Practice Problems	61
	Chapter 2 Test Questions	62
3.	Statistical Parameters:	
	Measures of Central Tendency and Variation	67
	Measures of Central Tendency	67
	The Mean	68
	The Median	69
	The Mode	71
	Choosing Between Measures of Central Tendency	72
	Klinkers and Outliers	73
	Uncertain or Equivocal Results	74
	Measures of Variation	75
	The Range	75
	The Standard Deviation	76
	Correcting for Bias in the Sample Standard Deviation	77
	How the Square Root of x^2 Is Almost	
	Equivalent to Taking the Absolute Value of x	78
	The Computational Formula for Standard Deviation	78
	The Variance	79
	The Sampling Distribution of Means, the Central	
	Limit Theorem, and the Standard Error of the Mean	80
	The Use of the Standard Deviation for Prediction	80
	Practical Uses of the Empirical Rule:	
	As a Definition of an Outlier	82
	Practical Uses of the Empirical Rule:	
	Prediction and IQ Tests	82
	Some Further Comments	82
	History Trivia: Fisher to Eels	83
	Key Terms, Symbols, and Definitions	83
	Chapter 3 Practice Problems	84
	Chapter 3 Test Questions	85

85 .

4.	Standard Scores, the z Distribution, and Hypothesis Testing	89 89
	Standard Scores	
	The Classic Standard Score: The z Score and the z Distribution	92
	Calculating z Scores	92 92
	More Practice on Converting Raw Data Into z Scores	94 94
	Converting From z Scores to Other Types of Standard Scores	94 95
	The z Distribution	
	Interpreting Negative z Scores	96
	Testing the Predictions of the Empirical Rule With	0.0
	the z Distribution	96
	Why Is the z Distribution So Important?	97
	How We Use the z Distribution to Test	
	Experimental Hypotheses	98
	More Practice With the z Distribution and T Scores	99
	Example 1: Finding the area in a z distribution	
	that falls above a known score where the known	
	score is above the mean	99
	Example 2: Finding the area in a z distribution	
	that falls below a known score where the	
	known score is above the mean	100
	Example 3: Finding the area in a z distribution	
	that falls below a known score where the known	
	score is below the mean	102
	Example 4: Finding the area in a z distribution	
	that falls above a known score where the known	
	score is below the mean	103
	Example 5: Finding the area in a z distribution	
	that falls between two known scores where	
	both known scores are above the mean	105
	Example 6: Finding the area in a z distribution	
	that falls between two known scores where one	
	known score is above the mean and one is	
	below the mean	107
	Example 7: Finding the area in a z distribution	10,
	that falls between two known scores where	
	both known scores are below the mean	108
		110
	Summarizing Scores Through Percentiles	112
	History Trivia: Karl Pearson to Egon Pearson	113
	Key Terms and Definitions	113
	Chapter 4 Practice Problems	114
	Chapter 4 Test Questions	114
5.		444
	Hypothesis Testing, and the z Distribution	119
	Hypothesis Testing in the Controlled Experiment	123
	Hypothesis Testing: The Big Decision	12.
	How the Big Decision Is Made: Back to the z Distribution	12:

The Parameter of Major Interest	
in Hypothesis Testing: The Mean	124
Nondirectional and Directional Alternative Hypotheses	125
A Debate: Retain the Null Hypothesis	
or Fail to Reject the Null Hypothesis	126
The Null Hypothesis as a Nonconservative Beginning	127
The Four Possible Outcomes in Hypothesis Testing	127
1. Correct Decision: Retain H ₀ , When	
H ₀ Is Actually True	127
2. Type I Error: Reject H ₀ , When	
H ₀ Is Actually True	128
3. Correct Decision: Reject H ₀ , When	
H ₀ Is Actually False	128
4. Type II Error: Retain H ₀ , When	
H ₀ Is Actually False	128
Significance Levels	129
Significant and Nonsignificant Findings	129
Trends, and Does God Really Love the .05 Level of	
Significance More Than the .06 Level?	130
Directional or Nondirectional Alternative Hypotheses:	
Advantages and Disadvantages	130
Did Nuclear Fusion Occur?	131
Baloney Detection	132
How Reliable Is the Source of the Claim?	132
Does This Source Often Make Similar Claims?	133
Have the Claims Been Verified by Another Source?	133
How Does the Claim Fit With Known	
Natural Scientific Laws?	134
Can the Claim Be Disproven or Has Only Supportive	
Evidence Been Sought?	135
Do the Claimants' Personal Beliefs and	
Biases Drive Their Conclusions or Vice Versa?	136
Conclusions About Science and Pseudoscience	137
The Most Critical Elements in the Detection of Baloney in	
Suspicious Studies and Fraudulent Claims	137
Can Statistics Solve Every Problem?	138
Probability	139
The Lady Tasting Tea	139
The Definition of the Probability of an Event	140
The Multiplication Theorem of Probability	140
Combinations Theorem of Probability	141
Permutations Theorem of Probability	142
Gambler's Fallacy	145
Coda	146
History Trivia: Egon Pearson to Karl Pearson	146
Key Terms, Symbols, and Definitions	147

	,	
	Chapter 5 Tractice Problems	148 149
6.	An Introduction to Correlation and Regression	153
о.	Correlation: Use and Abuse	155
	A Warning: Correlation Does Not Imply Causation	157
	1. Marijuana Use and Heroin	
	Use Are Positively Correlated	158
	2. Milk Use Is Positively Correlated to Cancer Rates	158
	3. Weekly Church Attendance Is	
	Negatively Correlated With Drug Abuse	158
	4. Lead Levels Are Positively	100
	Correlated With Antisocial Behavior	158
	5. The Risk of Getting Alzheimer's	200
	Dementia Is Negatively Correlated	159
	With Smoking Cigarettes	107
	 Sexual Activity Is Negatively Correlated With Increases in Education 	159
	7. An Active Sex Life Is Positively Correlated With	10)
		160
	Longevity 8. Coffee Drinking Is Negatively	100
	Correlated With Suicidal Risk	160
	9. Excessive Drinking and Smoking	100
	Causes Women to Be Abused	160
	Another Warning: Chance Is Lumpy	161
	Correlation and Prediction	161
	The Four Common Types of Correlation	161
	The Pearson Product-Moment Correlation Coefficient	162
	Testing for the Significance of a Correlation Coefficient	164
	Obtaining the Critical Values of the <i>t</i> Distribution	165
	Step 1: Choose a One-Tailed or Two-Tailed Test of	100
		166
	Significance Step 2: Choose the Level of Significance	166
	Step 2: Choose the Level of Significance Step 3: Determine the Degrees of Freedom (df)	166
	Step 4: Determine Whether the t From the	100
	Formula (Called the Derived t) Exceeds	
	the Tabled Critical Values From the t Distribution	166
		167
	If the Null Hypothesis Is Rejected	10,
	Representing the Pearson Correlation Graphically: The	167
	Scatterplot	107
	Fitting the Points With a Straight Line: The Assumption of a	167
	Linear Relationship	169
	Interpretation of the Slope of the Best-Fitting Line	172
	The Assumption of Homoscedasticity	1/4
	The Coefficient of Determination: How	
	Much One Variable Accounts for Variation	172
	in Another Variable: The Interpretation of r^2	1/4

	Quirks in the Interpretation of Significant	
	and Nonsignificant Correlation Coefficients	173
	Linear Regression	174
	Reading the Regression Line	175
	R	177
	R-Square	178
	Adjusted R-Square	178
	Final Thoughts About Regression Analyses	180
	Spearman's Correlation	180
	Significance Test for Spearman's r	182
	Ties in Ranks	182
	Point-Biserial Correlation	184
	Testing for the Significance of the	
	Point-Biserial Correlation Coefficient	186
	Phi (φ) Correlation	187
	Testing for the Significance of Phi	188
	History Trivia: Galton to Fisher	188
	Key Terms, Symbols, and Definitions	190
	Chapter 6 Practice Problems	191
	Chapter 6 Test Questions	192
7.	The t Test for Independent Groups	197
	The Statistical Analysis of the Controlled Experiment	197
	One t Test But Two Designs	198
	Assumptions of the Independent t Test	199
	Independent Groups	199
	Normality of the Dependent Variable	200
	Homogeneity of Variance	200
	The Formula for the Independent t Test	200
	You Must Remember This! An Overview of	
	Hypothesis Testing With the t Test	201
	What Does the t Test Do? Components of	
	the t Test Formula	201
	What If the Two Variances Are Radically	
	Different From One Another?	202
	A Computational Example	202
	Steps in the t Test Formula	203
	Steps in Determining Significance	205
	The Power of a Statistical Test	207
	Effect Size	208
	The Correlation Coefficient of Effect Size	208
	Confidence Intervals	209
	Estimating the Standard Error	212
	History Trivia: Gosset and Guinness Brewery	213
	Key Terms and Definitions	214
	Chapter 7 Practice Problems	215
	Chapter 7 Test Questions	215

8.	The t Test for Dependent Groups	219
	Variations on the Controlled Experiment	219
	Design 1	220
	Design 2	220
	Design 3	221
	Assumptions of the Dependent t Test	221
	Why the Dependent t Test May Be More Powerful	
	Than the Independent t Test	222
	How to Increase the Power of a t Test	222
	Drawbacks of the Dependent t Test Designs	223
	One-Tailed or Two-Tailed Tests of Significance	223
	Hypothesis Testing and the Dependent t Test: Design 1	224
	Design 1 (Same Participants or Repeated Measures):	
	A Computational Example	225
	Determination of Effect Size	227
	Design 2 (Matched Pairs): A Computational Example	228
	Determination of Effect Size	231
	Design 3 (Same Participants and Balanced Presentation):	
	A Computational Example	231
	Determination of Effect Size	234
	History Trivia: Fisher to Pearson	234
	Key Terms and Definitions	235
	Chapter 8 Practice Problems	235
	Chapter 8 Test Questions	236
9.	Analysis of Variance: One-Factor	
	Completely Randomized Design	241
	A Limitation of Multiple t Tests and a Solution	241
	The Equally Unacceptable Bonferroni Solution	242
	The Acceptable Solution: An Analysis of Variance	242
	The Null and Alternative	
	Hypotheses in Analysis of Variance	243
	The Beauty and Elegance of the F Test Statistic	244
	The F Ratio	245
	How Can There Be Two Different Estimates of	
	Within-Groups Variance?	245
	ANOVA Designs	247
	ANOVA Assumptions	248
	Pragmatic Overview	248
	What a Significant ANOVA Indicates	249
	A Computational Example	249
	Degrees of Freedom for the Numerator	252
	Degrees of Freedom for the Denominator	252
	Determining Effect Size in ANOVA	253
	History Trivia: Gosset to Fisher	254
	Key Terms and Definitions	256

	Chapter 9 Practice Problems Chapter 9 Test Questions	257 258
		236
10.	After a Significant Analysis of Variance:	2.62
	Multiple Comparison Tests	263
	Conceptual Overview of Tukey's Test	264
	Computation of Tukey's HSD Test	264
	What to Do If the Error Degrees of Freedom	
	Are Not Listed in the Table of Tukey's q Values	266
	Determining What It All Means	266
	On the Importance of Nonsignificant Mean Differences	268
	Final Results of ANOVA	268
	Tukey's With Unequal Ns	268
	Key Terms, Symbols, and Definitions	269
	Chapter 10 Practice Problems	269
	Chapter 10 Test Questions	269
11.	Analysis of Variance:	
	One-Factor Repeated-Measures Design	273
	The Repeated-Measures ANOVA	273
	Assumptions of the One-Factor	
	Repeated-Measures ANOVA	274
	Computational Example	274
	Determining Effect Size in ANOVA	278
	Key Terms and Definitions	279
	Chapter 11 Practice Problems	279
	Chapter 11 Test Questions	280
12.	Analysis of Variance: Two-Factor	
	Completely Randomized Design	283
	Factorial Designs	283
	The Most Important Feature of a	
	Factorial Design: The Interaction	284
	Fixed and Random Effects and In Situ Designs	284
	The Null Hypotheses in a Two-Factor ANOVA	285
	Assumptions and Unequal Numbers of Participants	285
	Computational Example	286
	Computation of the First Main Effect	287
	Computation of the Second Main Effect	287
	Computation of the Interaction Between	
	the Two Main Effects	288
	Interpretation of the Results	290
	Key Terms and Definitions	291
	Chapter 12 Practice Problems	291
	Chapter 12 Test Questions	292
13.	Post Hoc Analysis of Factorial ANOVA	297
	Main Effect Interpretation: Gender	297

	Why a Multiple Comparison Test Is	
	Unnecessary for a Two-Level Main Effect, and	
	When Is a Multiple Comparison Test Necessary?	298
	Main Effect: Age Levels	298
	Multiple Comparison Test for the Main Effect for Age	299
	Warning: Limit Your Main Effect Conclusions When	
	the Interaction Is Significant	301
	Multiple Comparison Tests	302
	Interpretation of Interaction Effect	302
	For the Males	304
	For the Females	305
	Males Versus Females	305
	Final Summary	305
	Writing Up the Results Journal Style	305
	Language to Avoid	306
	Exploring the Possible Outcomes in a Two-Factor ANOVA	306
	Determining Effect Size in a Two-Factor ANOVA	308
	History Trivia: Fisher and Smoking	309
	Key Terms, Symbols, and Definitions	310
	Chapter 13 Practice Problems	310
	Chapter 13 Test Questions	311
14.	Factorial Analysis of Variance: Additional Designs	315
	The Split-Plot Design	315
	Overview of the Split-Plot ANOVA	316
	Computational Example	316
	Main Effect: Social Facilitation	321
	Main Effect: Trials	321
	Interaction: Social Facilitation × Trials	322
	Two-Factor ANOVA: Repeated	
	Measures on Both Factors Design	322
	Overview of the Repeated-Measures ANOVA	322
	Computational Example	323
	Key Terms and Definitions	330
	Chapter 14 Practice Problems	330
	Chapter 14 Test Questions	331
15.	Nonparametric Statistics: The Chi-Square Test	335
	Overview of the Purpose of Chi-Square	336
	Overview of Chi-Square Designs	337
	Chi-Square Test: Two-Cell	
	Design (Equal Probabilities Type)	337
	Computation of the Two-Cell Design	338
	The Chi-Square Distribution	339
	Assumptions of the Chi-Square Test	340
	Chi-Square Test: Two-Cell	
	Design (Different Probabilities Type)	340

Computation of the Two-Cell Design	341
Interpreting a Significant Chi-Square Test for a Newspaper	342
Chi-Square Test: Three-Cell Experiment	
(Equal Probabilities Type)	343
Computation of the Three-Cell Design	343
Chi-Square Test: Two-by-Two Design	344
Computation of the	
Chi-Square Test: Two-by-Two Design	345
What to Do After a Chi-Square Test Is Significant	348
When Cell Frequencies Are Less Than 5 Revisited	349
History Trivia: Pearson and Biometrika	350
Key Terms, Symbols, and Definitions	350
Chapter 15 Practice Problems	350
Chapter 15 Test Questions	351
16. Other Statistical Parameters and Tests	355
Health Science Statistics	356
Test Characteristics	356
Risk Assessment	359
Parameters of Mortality and Morbidity	361
Analysis of Covariance	363
Multivariate Analysis of Variance	363
Multivariate Analysis of Covariance	364
Factor Analysis	365
Multiple Regression	366
Canonical Correlation	366
Linear Discriminant Function Analysis	367
Cluster Analysis	368
A Summary of Multivariate Statistics Coda	368
	369
Key Terms and Definitions	369
Chapter 16 Practice Problems Chapter 16 Test Questions	371 371
Chapter 10 Test Questions	3/1
Appendix A: z Distribution	375
Appendix B: t Distribution	381
Appendix C: Spearman's Correlation	383
Appendix D: The Chi-Square Distribution	385
Appendix E: F Distribution	387
Appendix F: Tukey's Table	389
References	391
Index	393
About the Author	