KENNETH K. KUO

PRINCIPLES COMBUSTION

second edition

CONTENTS

Int	roduction	1
	Importance of Combustion in Various Applications / 1 Related Constituent Disciplines for Combustion Studies / 3 General Method of Approach to Combustion Problems / 4 General Objectives of Combustion Modeling / 4 Classification of Combustion Problems / 4 General Structure of a Theoretical Model / 6 Governing Equations for Combustion Modeling (Conservation and Transport Equations) / 6 Some Common Assumptions Made in Combustion Models (Especially for Classical Models) / 6 Several Basic Definitions / 8	
Re	view of Chemical Thermodynamics	11
2 3 4 5	Nomenclature / 11 Brief Statement of Thermodynamic Laws / 15 Equation of State / 17 Conservation of Mass / 18 The First Law of Thermodynamics; Conservation of Energy / 20 The Second Law of Thermodynamics / 24 5.1 Equilibrium Thermodynamics / 24 5.2 Nonequilibrium Thermodynamics / 26 Criteria for Equilibrium / 34 Conservation of Atomic Species / 36	
		vii

Preface

Preface to the First Edition

ххі

XXV

2

8	Various Methods for Reactant-Fraction Specification / 38 8.1 Mole Fraction X and Mass Fraction Y / 38 8.2 Fuel-Oxidant Ratio F/O and Fuel-Air Ratio F/A / 39 8.3 Equivalence Ratio ϕ / 39
0	8.4 Mixture Fraction f / 40 Standard Enthalping of Formation / 43
	Standard Enthalpies of Formation / 43 Thermochemical Laws / 47
	Relationship Between Bond Energies and Heats
11	of Formation / 48
12	Heats of Reaction for Constant-Pressure
12	and Constant-Volume Combustion / 52
	12.1 Constant-Pressure Combustion / 53
	12.2 Constant-Volume Combustion / 66
13	Energy Balance Considerations for Flame Temperature
	Calculations / 68
14	Equilibrium Constants / 73
15	Real-Gas Equations of State and Fugacity Calculation / 90
16	More-Complicated Dissociation in the Combustion
	of Hydrocarbons / 93
17	The Clausius-Clapeyron Equation for Phase Equilibrium / 96
18	Calculation of Equilibrium Compositions with NASA's CEA
	Computer Program / 98
	18.1 Assumptions and Capabilities / 101
	18.2 Equations Describing Chemical Equilibrium / 103
	18.2.1 Thermodynamic Equations / 103
1.0	18.2.2 Minimization of Gibbs Free Energy / 104
19	Other Well-Established Chemical Equilibrium Codes / 107
	References / 109
	Homework / 110
	Projects / 114
	nemical Kinetics and Reaction Mechanisms
· Cı	letifical Killetics and reaction modifications
	Nomenclature / 116
1	Rates of Reaction and Their Functional Dependence / 118
	1.1 Total Collision Frequency / 119
	1.2 Equation of Arrhenius / 122
	1.3 Apparent Activation Energy / 125
	1.4 Rates of Reaction / 126
	1.5 Methods for Measurement of Gas-Phase Reaction Rates / 131
	1.5.1 Static Methods / 132
	1.5.1.1 Flash Photolysis Resonance Fluorescence
	Technique / 133
	1.5.1.2 Relative Rate-Constant Photolysis
	Technique / 134

116

1.5.1.3	Laser Photolysis/Laser	Induced	Fluorescence
	Technique / 135		

- 1.5.2 Dynamic Methods for Reactions in Flow Systems / 136
- 1.5.3 Several Methods for Measuring Rapid Reaction Rates / 137
- 2 One-Step Chemical Reactions of Various Orders / 141
 - 2.1 First-Order Reactions / 141
 - 2.2 Second-Order Reactions / 144
 - 2.3 Third-Order Reactions / 147
- 3 Consecutive Reactions / 148
- 4 Competitive Reactions / 150
- 5 Opposing Reactions / 150
 - 5.1 First-Order Reaction Opposed by a First-Order Reaction / 151
 - 5.2 First-Order Reaction Opposed by a Second-Order Reaction / 153
 - 5.3 Second-Order Reaction Opposed by a Second-Order Reaction / 153
- 6 Chain Reactions / 154
 - 6.1 Free Radicals / 154
 - 6.2 Lindemann's Theory for First-Order Reaction / 156
 - 6.3 Complex Reactions / 159
 - 6.3.1 Hydrogen-Bromine Reaction / 159
- 7 Chain-Branching Explosions / 162
- 8 Chemkin Analysis and Code Application

for Gas-Phase Kinetics / 164

- 8.1 Thermodynamic Properties / 165
- 8.2 Reaction Rate Expressions / 166
- 8.3 Brief Description of Procedures in Using Chemkin Code / 169
- 9 Surface Reactions / 173
 - 9.1 Surface Adsorption Processes / 174
 - 9.1.1 The Langmuir Adsorption Isotherm / 176
 - 9.1.2 Adsorption with Dissociation / 177
 - 9.1.3 Competitive Adsorption / 178
 - 9.2 Surface Reaction Processes / 178
 - 9.2.1 Reaction Mechanism / 178
 - 9,2,2 Unimolecular Surface Reactions / 180
 - 9.2.3 Bimolecular Surface Reactions / 181
 - 9.2.4 Desorption / 182
 - 9.3 Kinetic Model of Hydrogen-Oxygen Reaction on Platinum Surface / 183
 - 9.3.1 Simple Kinetic Model of H₂/O₂ Reaction on Platinum Surface / 184

	9.3.2 Kinetic Rates of H ₂ /O ₂ Reaction on Platinum
	Surface / 186
	9.4 Experimental Methods to Study Surface Reactions / 187
	9.4.1 Spectroscopic Methods / 187
	9.4.1.1 Auger Electron Spectroscopy / 187
	9.4.2 Temperature-Controlled Methods / 189
	9.4.3 Combination of Spectroscopic and
	Temperature-Controlled Methods / 190
	9.5 Surface Reaction Rate Determination / 190
	9.5.1 An Example of Application of LIF Technique in
	Surface Reaction Rate Determination / 191
	9.5.1.1 The Elementary Steps / 192
	9.5.1.2 Experimental Setup / 193
	9.5.1.3 Experimental Results / 193
10	Rate Laws for Isothermal Reactions Utilizing Dimensionless
	Parameters / 195
	10.1 Equilibrium Constants / 197
	10.2 Net Rate of Production of Chemical Species / 199
11	Procedure and Applications of Sensitivity Analysis / 199
	11.1 Introduction to Sensitivity Analysis / 200
	11.2 The Procedure for Local Sensitivity Analysis / 205
	11.2.1 Time-Dependent Zero-Dimensional Problems / 205
	11.2.2 The Procedure for Steady-State One-Dimensional
	Problems / 208
	11.2.3 The Procedure for Time-Dependent Spatial
	Problems / 209
	11.3 The Example of Sensitivity Analysis of Aliphatic
	Hydrocarbon Combustion / 210
	11.3.1 Local Sensitivity Analysis in One-Dimensional Flame
	Fronts / 210
	11.3.2 Sensitivity Analysis for Zero-Dimensional
	Problems / 210
12	Reaction Flow Analysis / 211
13	Reaction Mechanisms of H ₂ /O ₂ Systems / 215
	13.1 Background Information about H ₂ /O ₂ Reaction
	Systems / 216
	13.2 Explosion Limits of H ₂ /O ₂ Systems / 220
14	Gas-Phase Reaction Mechanisms of Aliphatic Hydrocarbon and
	Oxygen System / 223
	14.1 Specific Mechanisms / 224
	14.1.1 Gas-Phase Kinetics of H ₂ Oxidation / 225
	14.1.2 O ₃ Decomposition Mechanism / 232
	14.1.3 CO Oxidation Mechanism / 233

14.1.4 CH₂O Reaction / 233

```
14.1.5 CH<sub>4</sub> Oxidation / 234
          14.1.6 C<sub>2</sub>H<sub>6</sub> (Ethane) Oxidation / 236
          14.1.7 C<sub>2</sub>H<sub>4</sub> (Ethylene) Oxidation / 237
          14.1.8 C<sub>2</sub>H<sub>2</sub> (Acetylene) Oxidation / 238
          14.1.9 CH<sub>2</sub>CO (Ketene) Oxidation / 240
         14.1.10 CH<sub>3</sub>OH (Methanol) Reactions / 241
         14.1.11 C<sub>2</sub>H<sub>5</sub>OH (Ethanol) Reactions / 242
         14.1.12 CH<sub>3</sub>CHO (Acetaldehyde) Reaction / 243
   14.2 Discussion of More Complex Cases / 244
15 Reduction of Highly Complex Reaction System
   to Simpler Reaction Mechanisms / 245
   15.1 Quasi-Steady-State Assumption (QSSA) and Partial
         Equilibrium Assumption / 246
    15.2 Computational Singular Perturbation Methods for Stiff
         Equations / 247
           15.2.1 Stiff Equations / 248
           15.2.2 Chemical Kinetic Systems as Stiff
                  Equations / 248
           15.2.3 Formulation of the Problem / 249
                 15.2.3.1 The Fast Subspace / 249
                 15.2.3.2 The Equations for f^{I} / 250
                 15.2.3.3 Determination of m, the Choice of \mathbf{a}_I and
                          |\mathbf{b}^{J}|/|251
           15.2.4 Procedures for Solving the Chain Reaction
                   Problems / 252
    15.3 Some Observations of the CSP Method / 252
16 Formation Mechanism of Nitrogen Oxides / 255
    16.1 Thermal NO Mechanism (Zel'dovich Mechanism) / 255
    16.2 Prompt NO Mechanism (Fenimore Mechanism) / 258
    16.3 NO Production from Fuel-Bound Nitrogen / 262
            16.3.1 The Oxidation of HCN / 262
            16.3.2 The NO \rightarrow HCN \rightarrow N<sub>2</sub> Mechanism / 264
            16.3.3 The Oxidation of NH<sub>3</sub> / 265
     16.4 NO<sub>2</sub> Mechanism / 267
     16.5 N<sub>2</sub>O Mechanism / 267
     16.6 Overall Remarks on NO<sub>x</sub> Formation / 269
 17 Formation and Control of CO and Particulates / 270
     17.1 Carbon Monoxide / 270
     17.2 Particulate Matter / 271
            17.2.1 Major Types of Particulates / 272
            17.2.2 Harmful Effects / 272
            17.2.3 Particulate Matter Control Methods / 272
     References / 274
```

Homework / 281

Nomenclature / 285 1 Definitions of Concentrations, Velocities,
and Mass Fluxes / 287
2 Fick's Law of Diffusion / 289
3 Theory of Ordinary Diffusion in Gases at Low
Density / 290
4 Continuity Equation and Species Mass
Conservation Equations / 293
5 Conservation of Momentum / 297
5.1 Momentum Equation in Terms of Stress / 297
5.1.1 Momentum Equation Derivation by Infinitesimal
Particle Approach / 298
5.1.2 Momentum Equation Derivation by Infinitesimal
Control Volume Approach / 302
5.1.3 Finite Control Volume / 303
5.2 Stress-Strain Rate Relationship (Constitutive
Relationship) / 304
5.2.1 Strain Rate / 305
5.2.2 Stress Tensor / 307
5.3 Navier-Stokes Equations / 310
6 Conservation of Energy / 320
7 Physical Derivation of the Multicomponent
Diffusion Equation / 328 8 Other Necessary Equations in Multicomponent
Systems / 331
9 Solution of a Multicomponent-Species System / 331
10 Shvab–Zel'dovich Formulation / 332
11 Dimensionless Ratios of Transport Coefficients / 336
12 Boundary Conditions at an Interface / 337
References / 350
Homework / 350
Projects / 353
Tryour, but
4 Detonation and Deflagration Waves of Premixed Gases
Nomenclature / 354
1 Qualitative Differences Between Detonation

and Deflagration / 356 2 The Hugoniot Curve / 357

3 Properties of the Hugoniot Curve / 361

3.1 Entropy Distribution along the Hugoniot Curve / 365

285

354

- 3.2 Comparison of the Burned-Gas Velocity Behind a Detonation Waye with the Local Speed of Sound / 367
- 4 Determination of Chapman-Jouguet Detonation

Wave Velocity / 373

- 4.1 Trial-and-Error Method / 373
- 4.2 The Newton-Raphson Iteration Method / 375
- 4.3 Comparison of Calculated Detonation-Wave Velocities with Experimental Data / 379
- 5 Detonation-Wave Structure / 381
 - 5.1 Zel'dovich-von Neumann-Döring (ZND) One-Dimensional Wave Structure / 381
 - 5.2 Multidimensional Detonation-Wave Structure / 384
 - 5.3 Numerical Simulation of Detonations / 386
- 6 The Mechanism of Deflagration-to-Detonation Transition (DDT) in Gaseous Mixtures / 388
- 7 Detonability and Chemical Kinetics: Limits
 - of Detonability / 395
 - 7.1 Classical Model of Belles / 395
 - 7.2 Detonability Limits of Confined Fuel Mixtures / 401
 - 7.2.1 Initial Condition Dependence / 402
 - 7.2.2 Boundary Condition Dependence / 402
 - 7.2.3 Single-Head Spin Detonation / 403
 - 7.3 Detonability Criteria and Detonation Cell Size / 405
 - 7.4 Chemical Kinetics of Detonation in H₂-Air-Diluent Mixtures / 410
- 8 Nonideal Detonations / 413
 - 8.1 Definition of Nonideal Detonation and Zel'dovich and Shchelkin's Detonation Mechanisms in Rough Tubes / 414
 - 8.2 Theoretical Considerations of Energy and Momentum Losses / 415
 - 8.3 Critical Pipe Diameter Consideration / 416
 - 8.4 Effect of Several Physical and Chemical Parameters on Detonability / 419
 - 8.5 Possible Measures for Reducing Potential of Detonation Wave Generation / 420
- 9 Consideration of Spontaneous Detonation Initiation / 422
 - 9.1 Functional Form of Distribution of Ignition Delay / 424
 - 9.2 Experimental Verification of Processes of Nonexplosive Detonation Initiation / 425
 - 9.2.1 Photochemical Initiation of Detonation in Mixtures with Nonuniform Concentration / 425
 - 9.2.2 Gasdynamic Jet as a Method of Creating Temperature-Concentration Nonuniformity / 426
 - 9.3 General Observation and Status of Understanding / 428

References / 428 Homework / 434 Project / 435

5 Premixed Laminar Flames

437

Nomenclature / 437

- 1 Introduction and Flame Speed Measurement Methods / 438
 - 1.1 Bunsen Burner Method / 438
 - 1.2 Constant-Volume Spherical Bomb Method / 442
 - 1.3 Soap-Bubble (Constant-Pressure Bomb) Method / 443
 - 1.4 Particle-Track Method / 445
 - 1.5 Flat-Flame Burner Method / 445
 - 1.6 Diagnostic Method for Flame Structure Measurements / 447
 - 1.6.1 Velocity Measurements / 448
 - 1.6.2 Density Measurements / 448
 - 1.6.3 Concentration Measurements / 448
 - 1.6.4 Temperature Measurements / 448
- 2 Classical Laminar-Flame Theories / 449
 - 2.1 Thermal Theory: Mallard and LeChatelier's Development (1883) / 449
 - 2.2 Comprehensive Theory: The Theory of Zel'dovich, Frank-Kamenetsky, and Semenov / 451
 - 2.3 Diffusion Theory: The Theory of Tanford and Pease / 458
- 3 Contemporary Method for Solving Laminar-Flame Problems / 461
 - 3.1 Premixed O₃/O₂ Laminar Flames / 461
 - 3.2 Chemkin Code for Solving Premixed Laminar-Flame Structures / 468
- 4 Dynamic Analysis of Stretched Laminar Premix Flames / 471
 - 4.1 Definition of Flame Stretch Factor and Karlovitz Number / 471
 - 4.2 Balance Equation for Premixed Laminar-Flame Area / 476
 - 4.3 The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures / 477
 - 4.4 Laminar Burning Velocities and Markstein Numbers of Hydrocarbon/Air Flames / 484
 - 4.5 Burning Rates of Ultra-Lean to Moderately Rich H₂/O₂/N₂ Laminar Flames with Pressure Variations / 490
- 5 Effect of Chemical and Physical Variables on Flame Speed / 496
 - 5.1 Chemical Variables / 496
 - 5.1.1 Effect of Mixture Ratio / 496
 - 5.1.2 Effect of Fuel Molecular Structure / 497
 - 5.1.3 Effects of Additives / 499
 - 5.2 Physical Variables / 500
 - 5.2.1 Effect of Pressure / 500

5.2.2 Effect of Initial Temperature / 5	522	Effect of	of Initial	Temperature	1	50
---	-----	-----------	------------	-------------	---	----

- 5.2.3 Effect of Flame Temperature / 502
- 5.2.4 Effect of Thermal Diffusivity and Specific Heat / 502
- 6 Principle of Stabilization of Combustion Waves in Laminar Streams / 503
- 7 Flame Quenching / 507
- 8 Flammability Limits of Premixed Laminar Flames / 510
 - 8.1 Flammability Limits Determined from a Standard Glass Tube / 510
 - 8.2 Effect of Pressure and Temperature on Flammability Limits / 512
 - 8.3 Spalding's Theory of Flammability Limits and Flame Quenching / 513
 - 8.4 Flame Structure near the Flammability Limits of Premixed Hydrogen-Oxygen Flames / 523

References / 528

Homework / 533

Project / 535

6 Gaseous Diffusion Flames and Combustion of a Single Liquid Fuel Droplet

537

Nomenclature / 537

- 1 Burke and Schumann's Theory of Laminar Diffusion Flames / 539
 - 1.1 Basic Assumptions and Solution Method / 544
 - 1.2 Flame Shape and Flame Height / 546
- 2 Phenomenological Analysis of Fuel Jets / 548
- 3 Laminar Diffusion Flame Jets / 551
 - 3.1 Laminar Jet Mixing / 551
 - 3.2 Laminar Jet with Chemical Reactions / 557
 - 3.3 Numerical Solution of Two-Dimensional Axisymmetric Laminar Diffusion Flames / 561
 - 3.4 Effect of Preferential Diffusion of Species and Heat in Laminar Diffusion Flames / 566
- 4 Evaporation and Burning of a Single Droplet in a Quiescent Atmosphere / 569
 - 4.1 Evaporation of a Single Fuel Droplet / 572
 - 4.2 Mass Burning Rate of a Single Fuel Droplet / 578
- 5 Fuel Droplet in a Convective Stream / 581
 - 5.1 Correlation Development for Nearly Spherical Droplets in Convective Streams / 581
 - 5.2 Simulation of Deformed Droplet Dynamics / 583
 - 5.3 Effect of Internal Circulation on Droplet Vaporization Rate / 585

6 Supercri	tical Burning of Liquid Droplets
in a Stag	gnant Environment / 590
6.1 The	ermodynamic and Transport Properties / 593
	5.1.1 Extended Corresponding-State Principle / 594
	6.1.2 Equation of State / 595
	6.1.3 Thermodynamic Properties / 596
	6.1.4 Transport Properties / 597
6.2 Va	por-Liquid Phase Equilibrium / 598
6.3 Dr	oplet Vaporization in Quiescent Environments / 603
	oplet Combustion in Quiescent Environments / 606
	oplet Vaporization in Supercritical Convective
	vironments / 610
	oplet Response to Ambient Flow Oscillation / 613
	ces / 614
	ork / 618
Projects	/ 620
	Evaluation of Thermal and Transport Properties of
	Gases and Liquids
Nomeno	elature / 623
	etion / 625
1 Gas De	nsity / 625
	aseline Method / 627
	Ideal-Gas Equation of State / 627
1.2 H	igh-Pressure Correction / 628
	Van der Waals Equation of State / 628
	Redlich-Kwong Equation of State / 628
	Soave (SRK) and Peng-Robinson Equations of
	State / 628
	Virial Equation of State / 629
	Beattie-Bridgeman Equation of State / 630
	Benedict-Webb-Rubin (BWR) Equation of
	State / 630
1.3 M	lixing Rules / 631
	Ideal-Gas Mixing Rules / 631
	Mixing Rules for Redlich-Kwong Type of Equation
	of State / 631
	Benedict—Webb—Rubin Mixing Rules / 632
	Virial Equation Mixing Parameters / 632
2 Liquid	Density / 633
2.1 B	aseline Method / 633
	Spencer—Danner Correlation and Other
	Modifications / 633 COSTALD (Hankinson-Thomson Correlation) / 634
	COSTALD (Trankinson - Thomson Contention) 1 034

623

2.2 High-Pressure Correction / 635

Hankinson-Brobst-Thomson (HBT) Model / 635

Generalized COSTALD / 636

Chang-Zhao Equation / 636

Model of Aalto et al. / 637

2.3 Mixing Rules / 638

Mixing Rules for Critical Temperature of Liquid

Mixtures / 638

Mixing Rules for Critical Volume $V_{c,m}$ and

Characteristic Volume V_m^* / 639

Mixing Rule for Acentric Factor / 639

Estimation of the Critical Pressure for a

Mixture / 640

- 3 Gas Specific Heat / 641
 - 3.1 Baseline Method / 641

Evaluation of Ideal-Gas Heat Capacity at Constant

Pressure, J/(mol·K) / 642

Joback Method¹ / 642

Method of Thinh et al. 26 / 644

- 3.2 High-Pressure Correction / 645
- 3.3 Mixing Rules / 650
- 4 Liquid Specific Heat / 651
 - 4.1 Baseline Method / 651

Group Contribution Method / 651

Corresponding States Method / 654

- 4.2 High-Pressure Correction / 654
- 4.3 Mixing Rule for Liquid Mixtures / 654
- 5 Gas Viscosity / 654
 - 5.1 Baseline Method / 655

Chapman-Enskog Approach / 655

Method of Corresponding States / 657

5.2 High-Pressure Correction / 658

Reichenberg Method / 658

Lucas Method / 659

- 5.3 Mixing Rules / 660
- 6 Liquid Viscosity / 661
 - 6.1 Baseline Method / 661

Correlating Equations / 662

Low-Temperature Viscosity Estimation

Methods / 664

Van Velzen, Cardozo, and Langenkamp's Group

Contribution Method⁶² / 665

Orrick and Erbar's Group Contribution

Method¹ / 665

Przezdziecki and Sridhar's Corresponding States
Method ⁶³ / 666
High-Temperature Liquid Viscosity Estimation
Methods / 667 Letsou and Stiel's Method for Saturated
Liquids ⁶⁷ / 667
Brule and Starling's ⁶⁸ and Chung et al.'s ⁶⁹
Method / 667
6.2 High-Pressure Correction / 668
Lucas's Estimation Method ⁴⁸ / 668
6.3 Mixing Rules / 669
Grunberg and Nissan's Method 1 / 669
Teja and Rice's Method ⁷⁴ / 670
7 Gas Thermal Conductivity / 671
7.1 Baseline Method / 671
7.2 High-Pressure Correction / 672
7.3 Mixing Rules / 673
Gas Mixture at Low to Moderate
Pressures / 673
Gas Mixture at High Pressures / 673
8 Liquid Thermal Conductivity / 674
8.1 Baseline Method / 674 Miller et al.'s Empirical Correlation ⁸⁶ / 674
Baroncini et al.'s Method / 675
8.2 High-Pressure Correction / 677
8.3 Mixing Rules / 677
9 Gas Diffusivity / 678
9.1 Baseline Method / 678
Chapman and Enskog's Method ⁴³ / 678
Wilke and Lee's Method ⁹¹ / 680
9.2 High-Pressure Correction / 680
9.3 Mixing Rules / 683
10 Liquid Diffusivity / 684
10.1 Baseline Method / 684
Wilke-Chang Correlation 4 / 684
Tyn and Calus's Method ⁹⁵ / 685
Hayduk and Minhas's Method ⁹⁶ / 686 Tyn's Method for Higher Temperatures ⁹⁷ / 686
Tyn's Method for riigher Temperatures 7 000
10.2 High-Pressure Correction / 687 10.3 Mixing Rules / 687
Perkins and Geankoplis's Method ⁹⁹ / 687
References / 688
TOTAL ON THE STATE OF THE STATE

	CONTEN	its xix
Appendix B	Constants and Conversion Factors Often Used in Combustion	693
Appendix C	Naming of Hydrocarbons and Properties of Hydrocarbon Fuels	697
Appendix D	Melting, Boiling, and Critical Temperatures of Elements	705
Appendix E	Periodic Table and Electronic Configurations of Neutral Atoms in Ground States	707
Refere	nce / 711	
Author Inde	»X	713
Subject Ind	ex	718