Dealing with

Texture

Maria Petrou Pedro García Sevilla

Contents

Preface		ix
1	Introduction	1
	What is texture?	1
	Why are we interested in texture?	1
	How do we cope with texture when texture is a nuisance?	3
	How does texture give us information about the material of the imaged object?	3
	Are there non-optical images?	4
	What is the meaning of texture in non-optical images?	4
	What is the albedo of a surface?	4
	Can a surface with variable albedo appear non-textured?	4
	Can a rough surface of uniform albedo appear non-textured?	4
	What are the problems of texture which image processing is trying to solve?	4
	What are the limitations of image processing in trying to solve the above problems?	
	How may the limitations of image processing be overcome for recognising textures?	6
	What is this book about?	6
	Box 1.1. An algorithm for the isolation of textured regions	6
2	Binary textures	11
	Why are we interested in binary textures?	11
	What is this chapter about?	11
	Are there any generic tools appropriate for all types of texture?	12
	Can we at least distinguish classes of texture?	12
	Which are the texture classes?	12
	Which tools are appropriate for each type of texture?	12
	2.1 Shape grammars	13
	What is a shape grammar?	13
	Box 2.1. Shape grammars	13
	What happens if the placement of the primitive pattern is not regular?	21
	What happens if the primitive pattern itself is not always the same?	22
	What happens if the primitive patterns vary in a continuous way?	22
	2.2 Boolean models	23
	What is a 2D Boolean model?	23
	Box 2.2. How can we draw random numbers according to a given probability density	
	function?	23

3

Box 2.3. What is a Poisson process?
How can we use the 2D Boolean model to describe a binary texture?
How can we estimate some aggregate parameters of the 2D Boolean model?
How can we estimate some individual parameters of the 2D Boolean model?
Box 2.4. How can we relate the individual parameters to the aggregate parameters
of the 2D Boolean model?
What is the simplest possible primitive pattern we may have in a Boolean model?
What is a 1D Boolean model?
How may the 1D Boolean model be used to describe textures?
How can we create 1D strings from a 2D image?
Box 2.5. Hilbert curves
How can we estimate the parameters of the 1D Boolean model?
Box 2.6. Parameter estimation for the discrete 1D Boolean model
What happens if the primitive patterns are very irregular?
2.3 Mathematical morphology
What is mathematical morphology?
What is dilation?
What is erosion?
Is there any way to lose details smaller than a certain size but leave the size of larger
details unaffected?
What is closing?
How do we do morphological operations if the structuring element is not symmetric
about its centre?
Since the structuring element looks like a small image, can we exchange the roles of
object and structuring element?
Is closing a commutative operation?
Can we use different structuring elements for the erosion and the dilation parts of
the opening and closing operators?
Can we apply morphological operators to the white pixels of an image instead of
applying them to the black pixels?
Can we apply more than one morphological operator to the same image?
Is erosion an associative operation as well?
How can we use morphological operations to characterise a texture?
Box 2.7. Formal definitions in mathematical morphology
What is the "take home" message of this chapter?
Stationary grey texture images
What is a stationary texture image?
What is this chapter about?
Are any of the methods appropriate for classifying binary textures useful for the analysis of grey textures?
3.1 Image binarisation
How may a grey image be analysed into a set of binary images by thresholding? .
How may a grey image be analysed into a set of binary images by bit-slicing? 8
Is there any relationship between the binary planes produced by thresholding and
the bit planes?

ix

3.2 Grey scale mathematical morphology	90
How does mathematical morphology generalise for grey images?	90
How is the complement of an image defined for grey images?	92
What is a non-flat structuring element?	92
What is the relationship between the morphological operations applied to an image	
and those applied to its complement?	96
What is the purpose of using a non-flat structuring element?	98
How can we perform granulometry with a grey image?	99
Can we extract in one go the details of a signal, peaks or valleys, smaller than a	
certain size?	100
How can we use the pattern spectrum to classify textures?	104
3.3 Fractals	105
What is a fractal?	105
What is the fractal dimension?	105
Which statistical properties remain the same at all scales in non-deterministic fractals	?117
Box 3.1. What is self-affine scaling?	117
Box 3.2. What is the relationship between the fractal dimension and exponent H ?	118
Box 3.3. What is the range of values of H ?	119
What is a fractional Brownian motion?	121
Box 3.4. Prove that the range of values of H for a fractional Brownian motion is	
(0,1)	125
Box 3.5. What is the correlation between two increments of a fractional Brownian	
motion?	126
Box 3.6. What is the power spectrum of a fractal?	127
Box 3.7. Robust line fitting using the Ransac method	152
Box 3.8. What is the autocorrelation function of a fractal?	152
Is fractal dimension a good texture descriptor?	164
Is there a way to enrich the description of textures offered by fractal models?	164
What is lacunarity?	165
3.4 Markov random fields	168
What is a Markov random field?	168
Which are the neighbouring pixels of a pixel?	169
How can we use MRFs to characterise textures?	169
What is texture synthesis by analysis?	169
How can we apply the Markov model to create textures?	172
Can we apply the method discussed in the previous section to create images with	
256 grey levels?	174
What is the auto-normal Markov random field model?	180
How can we estimate the Markov parameters of a texture?	182
What is maximum likelihood estimation?	182
What is the log-likelihood?	184
Box 3.9. What is the relationship between maximum likelihood estimation and	
Bayesian estimation?	185
How can we apply maximum likelihood estimation to estimate the parameters of a	
Markov random field?	185
How do we know which parameter values to try when we apply MLE to estimate	
the Markov parameters?	186

How can we estimate the Markov parameters with the least square error estimation	
method?	189
Box 3.10. Least square parameter estimation for the MRF parameters	190
Is a Markov random field always realisable given that we define it arbitrarily?	196
What conditions make an MRF self-consistent?	196
What is a clique in a neighbourhood structure?	196
3.5 Gibbs distributions	198
What is a Gibbs distribution?	198
What is a clique potential?	198
Can we have a Markov random field with only singleton cliques?	201
What is the relationship between the clique potentials and the Markov parameters?	211
Box 3.11. Prove the equivalence of Markov random fields and Gibbs distributions	
(Hammersley-Clifford theorem)	215
How can we use the Gibbs distribution to create textures?	220
How can we create an image compatible with a Gibbs model if we are not interested	
in fixing the histogram of the image?	226
What is the temperature of a Gibbs distribution?	230
How does the temperature parameter of the Gibbs distribution determine how dis-	
tinguishable one configuration is from another?	230
What is the critical temperature of a Markov random field?	238
3.6 The autocorrelation function as a texture descriptor	246
How can we compute the autocorrelation function of an MRF?	246
Can we use the autocorrelation function itself to characterise a texture?	246
How can we use the autocorrelation function directly for texture characterisation?	250
How can we infer the periodicity of a texture from the autocorrelation function? .	252
How can we extract parametric features from the autocorrelation function?	253
Box 3.12. Least square fitting in 2D and 1D	257
3.7 Texture features from the Fourier transform	260
Can we infer the periodicity of a texture directly from its power spectrum?	260
Does the phase of the Fourier transform convey any useful information?	265
Since the phase conveys more information for a pattern than its power spectrum,	200
why don't we use the phase to describe textures?	270
Is it possible to compute from the image phase a function the value of which changes	210
only due to genuine image changes?	270
How do we perform phase unwrapping?	271
What are the drawbacks of the simple phase unwrapping algorithm?	$\frac{271}{273}$
3.8 Co-occurrence matrices	$\frac{275}{275}$
Can we use non-parametric descriptions of texture?	$\frac{275}{275}$
How is a co-occurrence matrix defined?	
How do we compute the co-occurrence matrix in practice?	277
How can we recognise textures with the help of the co-occurrence matrix?	$281 \\ 281$
How can we choose the parameters of the co-occurrence matrix?	$\frac{201}{283}$
What are the higher-order co-occurrence matrices?	$\frac{263}{294}$
What is the "take home" message of this chapter?	$\frac{294}{294}$
TIME TO THE TOURS HOUSE OF THE CHAPTER.	ムガ仕

Ŀ	Non-stationary grey texture images	297
	What is a non-stationary texture image?	297
	What is this chapter about?	297
	Why can't we use the methods developed in the previous chapter here?	297
	How can we be sure that the texture inside an image window is stationary?	297
	4.1 The uncertainty principle and its implications in signal and image	
	processing	298
	What is the uncertainty principle in signal processing?	298
	Box 4.1. Prove the uncertainty principle in signal processing	302
	Does the window we choose in order to extract local information influence the result	
	How can we estimate "what is happening where" in a digital signal?	315
	How can we deal with the variability of the values of a feature?	318
	How do we know which size window we should use?	323
	How is the uncertainty principle generalised to 2D?	326
	4.2 Gabor functions	329
	What is a Gabor function?	$\frac{329}{329}$
	Why are Gabor functions useful in analysing a signal?	330
	How can we use the Gabor functions in practice?	336
	How is a Gabor function generalised in 2D?	$\frac{330}{341}$
		$\frac{341}{345}$
	How may we use the 2D Gabor functions to analyse an image?	353
	Can we have alternative tessellations of the frequency domain?	
		356
	What is an octave?	356
	How may we choose the parameters of the Gaussian window in the frequency space	: 557 380
	4.3 Prolate spheroidal sequence functions	380
	Is it possible to have a window with sharp edges in one domain which has minimal	200
	side ripples in the other domain?	380
	Box 4.2. Of all the band-limited sequences one can define, which sequence has the	901
	maximum energy concentration between a given set of indices?	381
	Box 4.3. Do prolate spheroidal wave functions exists in the digital domain?	384
	What is the relationship of two band-limited functions, the Fourier transforms of	-2000
	which are given by the real functions $F(\omega_x, \omega_y)$, and $F(-\omega_x, -\omega_y)$, respectively	71393
	How can we construct a filter which is band-limited in two bands which are sym-	394
	metrically placed about the origin of the axes in the frequency domain?	
	Box 4.4. How may we generalise the prolate spheroidal sequence functions to 2D?	403
	Could we construct the 2D prolate spheroidal sequence filters as separable filters?	425
	What is the advantage of using separable filters?	428
	4.4 Wavelets	436
	Is there a way other than using Gabor functions to span the whole spatio-frequency	49.0
	space?	436
	What is a wavelet?	439
	How can we use wavelets to analyse a signal?	440
	Box 4.5. How should we choose the mother wavelet?	442
	Box 4.6. Does the wavelet function minimise the uncertainty inequality?	448
	How is the wavelet transform adapted for digital signals?	460
	How do we compute the wavelet coefficients in practice?	463

Why is the continuous wavelet transform invertible and the discrete wavelet trans-	
form non-invertible?	474
How can we span the part of the "what happens when" space which contains the	
direct component of the signal?	475
Can we span the whole "what is where" space by using only the scaling function?.	477
What is a Laplacian pyramid?	477
Why is the creation of a Laplacian pyramid associated with the application of a	
Gaussian function at different scales, and the subtraction of the results?	477
Why may the second derivative of a Gaussian function be used as a filter to estimate	
the second derivative of a signal?	477
How can we extract the coarse resolution content of a signal from its content at a	
finer resolution?	477
How can we choose the scaling function?	481
How do we perform the multiresolution analysis of a signal in practice?	485
Why in tree wavelet analysis do we always analyse the part of the signal which	
contains the low frequencies only?	486
Box 4.7. How do we recover the original signal from its wavelet coefficients in practice	
How many different wavelet filters exist?	500
How may we use wavelets to process images?	500
How may we use wavelets to construct texture features?	507
What is the maximum overlap algorithm?	507
What is the relationship between Gabor functions and wavelets?	518
4.5 Where Image Processing and Pattern Recognition meet	521
Why in wavelet analysis do we always split the band with the maximum energy? .	521
What is feature selection?	521
How can we visualise the histogram of more than one feature in order to decide	
whether they constitute a good feature set?	523
What is the feature space?	523
What is the histogram of distances in a feature space?	523
Is it possible that the histogram of distances does not pick up the presence of clusters,	
even though clusters are present?	525
How do we segment the image once we have produced a set of features for each pixel	?527
What is the K -means algorithm?	527
What is deterministic annealing?	528
Box 4.8. Maximum entropy clustering	529
How may we assess the quality of a segmentation?	535
How is the Bhattacharyya distance defined?	535
How can we compute the Bhattacharyya distance in practice?	535
How may we assess the quality of a segmentation using a manual segmentation as	
reference?	536
What is a confusion matrix?	537
What are the over- and under-detection errors?	538
4.6 Laws' masks and the "what looks like where" space	539
Is it possible to extract image features without referring to the frequency domain?	539
How are Laws' masks defined?	539
Is there a systematic way to construct features that span the "what looks like where"	
space completely?	548

How can we expand a local image neighbourhood in terms of the Walsh elementary	FFC
images?	556
in terms of a set of elementary images?	562
Is there any other way to express the local structure of the image?	573
4.7 Local binary patterns	573
	574
What is the local binary pattern approach to texture representation?	574 - 574
How can we make this representation rotationally invariant?	$\frac{574}{575}$
How can we make this representation appropriate for macro-textures?	
How can we use the local binary patterns to characterise textures?	576
What is a metric?	576
What is a pseudo-metric?	576
Why should one wish to use a pseudo-metric and not a metric?	577
How can we measure the difference between two histograms?	577
How can we use the local binary patterns to segment textures?	579
How can we overcome the shortcomings of the LBP segmentation?	580
4.8 The Wigner distribution	583
What is the Wigner distribution?	583
How is the Wigner distribution used for the analysis of digital signals?	591
What is the pseudo-Wigner distribution?	591
What is the Kaiser window?	592
What is the Nyquist frequency?	594
Why does the use of the pseudo-Wigner distribution require signals which have been	
sampled at twice their Nyquist frequency?	595
Should we worry about aliasing when we use the pseudo-Wigner distribution for	
texture analysis?	595
How is the pseudo-Wigner distribution defined for the analysis of images?	597
How can the pseudo-Wigner distribution be used for texture segmentation?	597
What is the "take-home" message of this chapter?	605
Bibliographical notes	607
References	609
Index	613