

William G. Pariseau

Design Analysis in Rock Mechanics

Contents

		face nowledgments	xi xv
1	Intr	oduction	1
	1.1	A practical design objective	3
	1.2	Problem solving	4
	1.3	Units	5
	1.4	Background information	6
		Rock mechanics literature	6
		Mechanical properties of rock	7
	1.5	Problems	7
		Basics	7
		Review of stress	8
		Review of strain and elasticity	10
2	Slop	pe stability	15
	2.1	Translational rock slope failures	18
		Planar block slides	18
		Safety factor improvement	31
		Wedge failures	38
	2.2	Rotational slope failures	60
		Remedial measures	68
		Base failures	70
		Toppling failures	72
	2.3	Problems	73
		Planar block slides	73
		Wedge failures	78
		Rotational slides	81
		Dynamics, toppling	85

vi I	C	^	n	t	_	n	٠	e
YI '	·	v	.,	·	c	11	·	3

3	Sha	fts	87
	3.1	Single unlined naturally supported shafts	87
		Shaft wall stress concentration	88
		Unlined circular shafts	89
		Unlined elliptical shafts	94
		Unlined rectangular shafts	101
		Shaft wall strengths	113
	3.2	Shaft wall support and liners	121
		Shaft wall bolting	122
		Circular shaft liners	130
		Circular steel rings	140
	3.3	Multiple naturally supported shafts	142
		Circular shafts in a row	142
		Shaft pillar safety	148
		Two circular shafts of different diameter	153
		Elliptical shafts in a row	155
		Rectangular shafts in a row	158
	3.4	Problems	162
		Single, naturally supported shafts	162
		Supported shafts, liners, bolts, rings	169
		Multiple shafts	173
4	Tun	nnels	175
	4.1	Naturally supported tunnels	175
	7.2	Single tunnels	1 7 7
		Single tunnel joints	184
		Multiple tunnels	189
	4.2	Tunnel support	194
		Fixed steel sets	194
		Pattern bolting – rock reinforcement	208
		Combination support	212
		Yieldable steel arches	218
		Light segment liner	219
	4.3	Problems	220
	.,.	Naturally supported tunnels	220
		Supported tunnels	221
		Rock mass classification schemes, ROD	226

			Contents	VII
 5	Enti	ries in stratified ground	:	229
	5.1	Review of beam analysis	,	229
		Basic beam formulas	,	230
		Important special cases		234
	5.2	Softrock entries	,	243
		Naturally supported roof		243
		Bolted roof		255
		Point anchored roof bolting		255
		Distributed anchorage roof bolting		261
		Roof trusses		264
	5.3	Problems	:	266
		Naturally supported roof		266
		Bolted roof	:	268
6	Pilla	ars in stratified ground	:	277
	6.1	Pillars in a single seam	:	277
		Tributary area, extraction ratio analysis	:	277
		Size effect on strength		281
	6.2	Pillars in dipping strata		289
		Extraction ratio formulas for pillars in dipping seams		289
		An unconventional Mohr's circle representation		293
		Generalized Mohr's circle		298
		Backfill effects on pillar safety factors		300
	6.3	Pillars with joints		306
		Flat seam pillars with joints		306
		Dipping seam pillars with joints		310
	6.4	Pillars in several seams		315
		Columnized main entry pillars		315
		Staggered chain entry pillars		321
	6.5	Barrier pillars		324
	6.6	Problems		329
7	Thr	ee-dimensional excavations		345
	7.1	Naturally supported caverns and stopes		346
		Spheroidal excavations		347
		Cubical and brick-shaped excavations		356
	7.2	Joints in cavern and stope walls		363
	7.3	Tabular excavations		364

viii	Contents

7.4	Cavern and stope support	366
	Hardrock mine fill	367
	Cable bolt support	386
7.5	Problems	390
	3D Caverns	390
	Back fill	391
	Cable bolting	393
8 Sub	sidence	397
8.1	Chimneys	397
	Chimney cave geometry	398
	Caving rock flow	405
	Chimney cave forces	407
	Chimney cave water forces	417
	Support near caving ground	421
8.2	Troughs	430
	Limit of subsidence	431
	Maximum subsidence	433
	Critical width	433
	NCB subsidence profile	435
	Angle of draw and subsidence factor adjustments	440
	NCB strain profile	444
	Surface damage	451
	Multipanel, multiseam subsidence	455
	Alternative approaches to subsidence	461
8.3	Problems	461
	Chimney caving	461
	Combination support	464
	Subsidence troughs	467
Append	ix A: Background literature	469
A.I	Books about fundamentals of mechanics	469
A.2	Books about rock mechanics	470
A.3	Books containing rock properties	471
A.4	General sources of rock mechanics information	472
Append	ix B: Mechanical properties of intact rock and joints	473
B.1	Elastic moduli of intact rock	474
	Young's modulus	474
	Poisson's ratio	477
	Shear modulus	479
	Anisotropy	480

Contents	ix
----------	----

B.2	Strength of intact rock	482
	Tensile strength	482
	Unconfined compressive strength	485
	Compressive strength under confining pressure	495
	MohrCoulomb strength	497
	Hoek-Brown strength	499
	DruckerPrager strength	499
	Nonlinear n-type strength	501
	Compressive strength test data	501
B.3	Joint stiffness	507
	Normal stiffness	508
	Shear stiffness	509
B.4	Joint strength	509
B.5	Simple combinations of intact rock and joints	512
	Continuously jointed rock mass moduli	514
	Discontinuously jointed rock mass moduli	518
	Continuously jointed rock mass strengths	520
	Discontinuously jointed rock mass strengths	523
Appendi	ix C: Rock mass classification schemes for engineering	529
C.1	Rock quality designation	529
C.2	Terzaghi modified scheme	529
C.3	RSR, RMR , and Q	530
C.4	Comparisons of Hp estimates	531
Append	ix D: Some useful formulas	533
D.I	Stress	533
	Normal and shear stress on a plane	535
	Principal (normal) stresses	536
	Principal shear stresses	537
	Mohr's circle	538
D.2	Strain	539
	Strain rosettes	539
	Small strain-displacement relations	541
D.3	·	541
	Hooke's law in one dimension – Young's modulus and shear modulus	541
	Hooke's law in two-dimensions – plane stress and plane strain	549
ת. ת		551
Kej Ind	erences	557
ma	ta et a	וננ