

Ross Baldick

Applied Optimization

Formulation and Algorithms for Engineering Systems

CAMBRIDGE

Contents

List	of illus	strations	page xii
Pre	face		xvii
1	In	troduction	1
	1.1	Goals	2
	1.2	Course plans	4
	1.3	Model formulation and development	4
	1.4	Overview	7
	1.5	Pre-requisites	14
2	Pi	roblems, algorithms, and solutions	15
	2.1	Decision vector	16
	2.2	Simultaneous equations	16
	2.3	Optimization	22
	2.4	Algorithms	47
	2.5	Solutions of simultaneous equations	54
	2.6	Solutions of optimization problems	61
	2.7	Sensitivity and large change analysis	80
	2.8	Summary	89
3	Transformation of problems		103
	3.1	Objective	105
	3.2	Variables	122
	3.3	Constraints	131
	3.4	Duality	139
	3.5	Summary	144

viii Contents

	Pa	rt I Linear simultaneous equations	159
4	Ca	ase studies	161
	4.1	Analysis of a direct current linear circuit	161
	4.2	Control of a discrete-time linear system	176
5	Algorithms		186
	5.1	Inversion of coefficient matrix	188
	5.2	Solution of triangular systems	189
	5.3	Solution of square, non-singular systems	193
	5.4	Symmetric coefficient matrix	204
	5.5	Sparsity techniques	209
	5.6	Changes	219
	5.7	Ill-conditioning	227
	5.8	Non-square systems	236
	5.9	Iterative methods	241
	5.10	Summary	242
	Pa	rt II Non-linear simultaneous equations	257
6	Ca	nse studies	259
	6.1	Analysis of a non-linear direct current circuit	260
	6.2	Analysis of an electric power system	267
7	Al	gorithms	285
	7.1	Newton-Raphson method	286
	7.2	Variations on the Newton-Raphson method	291
	7.3	Local convergence of iterative methods	298
	7.4	Globalization procedures	316
	7.5	Sensitivity and large change analysis	324
	7.6	Summary	326
8	So	lution of the case studies	334
	8.1	Analysis of a non-linear direct current circuit	334
	8.2	Analysis of an electric power system	340

		Contents	ix
	Par	rt III Unconstrained optimization	361
9	Ca	se studies	363
	9.1	Multi-variate linear regression	363
	9.2	Power system state estimation	372
10	Als	gorithms	381
	10.1		381
	10.2	Approaches to finding minimizers	394
	10.3	Sensitivity	416
	10.4	Summary	419
11	Sol	lution of the case studies	425
	11.1	Multi-variate linear regression	425
	11.2	Power system state estimation	434
	Pa	rt IV Equality-constrained optimization	445
12	Ca	se studies	447
	12.1	Least-cost production	447
	12.2	Power system state estimation with zero injection buses	457
13	Al	gorithms for linear constraints	463
	13.1	Optimality conditions	464
	13.2	Convex problems	483
	13.3	Approaches to finding minimizers	495
	13.4	Sensitivity	509
	13.5	Solution of the least-cost production case study	514
	13.6	Summary	517
14	Al	gorithms for non-linear constraints	529
	14.1	Geometry and analysis of constraints	530
	14.2	Optimality conditions	537
	14.3	Approaches to finding minimizers	541
	14.4	Sensitivity	545
	14.5	Solution of the zero injection bus case study	547
	14.6	Summary	549

x Contents

	Pa	rt V Inequality-constrained optimization	557
15	Ca	ase studies	559
	15.1	Least-cost production with capacity constraints	559
	15.2	Optimal routing in a data communications network	562
	15.3	Least absolute value estimation	572
	15.4	Optimal margin pattern classification	576
	15.5	Sizing of interconnects in integrated circuits	582
	15.6	Optimal power flow	593
16	Al	gorithms for non-negativity constraints	607
	16.1		608
	16.2	Convex problems	618
	16.3	Approaches to finding minimizers: active set method	620
	16.4	Approaches to finding minimizers: interior point algorithm	630
	16.5	Summary	658
17	Al	gorithms for linear constraints	669
	17.1	Optimality conditions	670
	17.2	Convex problems	679
	17.3	Approaches to finding minimizers	691
	17.4	Sensitivity	697
	17.5	Summary	700
18	So	lution of the linearly constrained case studies	708
	18.1	Least-cost production with capacity constraints	708
	18.2	Optimal routing in a data communications network	710
	18.3	Least absolute value estimation	712
	18.4	Optimal margin pattern classification	712
19	Al	gorithms for non-linear constraints	723
	19.1		724
	19.2	Optimality conditions	727
	19.3	Convex problems	731
	19.4	Approaches to finding minimizers	738
	19.5	Sensitivity	741
	19.6	Summary	744
20	So	lution of the non-linearly constrained case studies	748
	20.1	Optimal margin pattern classification	748
	20.2	Sizing of interconnects in integrated circuits	748
	20.3	Optimal power flow	750
Refe	rences		754
Inde	x		762

Contents	X1

1	Appendices (downloadable from www.cambridge.org)	
Appendix A	Mathematical preliminaries	771
A.1	Notation	771
A.2	Types of functions	777
A.3	Norms	781
A.4	Limits	785
A.5	Sets	789
A.6	Properties of matrices	791
A.7	Special results	795
Appendix I	Proofs of theorems	802
B.1	Problems, algorithms, and solutions	802
B.2	Algorithms for linear simultaneous equations	805
B.3	Algorithms for non-linear simultaneous equations	809
B.4	Algorithms for linear equality-constrained minimization	818
B.5	Algorithms for linear inequality-constrained minimization	819
B.6	Algorithms for non-linear inequality-constrained minimization	823