The Multibody Systems Approach to Vehicle Dynamics

Mike Blundell and Damian Harty
Contents

Preface xi
Acknowledgements xv
Nomenclature xvi

1 **Introduction**
1.1 Overview 1
1.2 What is vehicle dynamics? 3
1.3 Why analyse? 10
1.4 Classical methods 10
1.5 Analytical process 11
1.6 Computational methods 14
1.7 Computer-based tools 14
1.8 Commercial computer packages 17
1.9 Benchmarking exercises 21

2 **Kinematics and dynamics of rigid bodies** 23
2.1 Introduction 23
2.2 Theory of vectors 23
2.2.1 Position and relative position vectors 23
2.2.2 The dot (scalar) product 26
2.2.3 The cross (vector) product 26
2.2.4 The scalar triple product 28
2.2.5 The vector triple product 28
2.2.6 Rotation of a vector 28
2.2.7 Vector transformation 31
2.2.8 Differentiation of a vector 32
2.2.9 Integration of a vector 34
2.2.10 Differentiation of the dot product 34
2.2.11 Differentiation of the cross product 34
2.2.12 Summary 35
2.3 Geometry analysis 38
2.3.1 Three point method 38
2.3.2 Vehicle suspension geometry analysis 41
2.4 Velocity analysis 43
2.5 Acceleration analysis 46
2.6 Static force and moment definition 51
2.7 Dynamics of a particle 55
2.8 Linear momentum of a rigid body 56
2.9 Angular momentum 57
2.10 Moments of inertia 59
2.11 Parallel axes theorem 63
2.12 Principal axes 65
2.13 Equations of motion 71
3 Multibody systems simulation software 75
3.1 Overview 75
3.2 Modelling features 78
 3.2.1 Planning the model 78
 3.2.2 Reference frames 79
 3.2.3 Basic model components 85
 3.2.4 Parts and markers 85
 3.2.5 Equations of motion for a part 86
 3.2.6 Basic constraints 90
 3.2.7 Standard joints 95
 3.2.8 Degrees of freedom 98
 3.2.9 Force elements 102
 3.2.10 Summation of forces and moments 114
3.3 Analysis capabilities 115
 3.3.1 Overview 115
 3.3.2 Solving linear equations 116
 3.3.3 Non-linear equations 119
 3.3.4 Integration methods 121
3.4 Systems of units 126
3.5 Pre- and post-processing 127

4 Modelling and analysis of suspension systems 131
4.1 The need for suspension 132
 4.1.1 Wheel load variation 133
 4.1.2 Body isolation 137
 4.1.3 Handling load control 139
 4.1.4 Compliant wheel plane control 145
 4.1.5 Kinematic wheel plane control 145
 4.1.6 Component loading environment 147
4.2 Types of suspension system 149
4.3 Quarter vehicle modelling approaches 152
4.4 Determination of suspension system characteristics 158
4.5 Suspension calculations 160
 4.5.1 Measured outputs 160
 4.5.2 Suspension steer axes 162
 4.5.3 Bump movement, wheel recession and half track change 163
 4.5.4 Camber and steer angle 163
 4.5.5 Castor angle and suspension trail 165
 4.5.6 Steering axis inclination and ground level offset 165
 4.5.7 Instant centre and roll centre positions 166
 4.5.8 Calculation of wheel rate 171
4.6 The compliance matrix approach 172
4.7 Case study 1 – Suspension kinematics 175
4.8 Durability studies (component loading) 180
 4.8.1 Overview 180
 4.8.2 Case study 2 – Static durability loadcase 184
 4.8.3 Case study 3 – Dynamic durability loadcase 187
4.9 Ride studies (body isolation) 190
 4.9.1 Case study 4 – Dynamic ride analysis 191
4.10 Case study 5 – Suspension vector analysis comparison with MBS 202
5 Tyre characteristics and modelling

5.1 Introduction

5.2 Tyre axis systems and geometry
5.2.1 The SAE and ISO tyre axis systems
5.2.2 Definition of tyre radii
5.2.3 Tyre asymmetry

5.3 The tyre contact patch
5.3.1 Friction
5.3.2 Pressure distribution in the tyre contact patch

5.4 Tyre force and moment characteristics
5.4.1 Components of tyre force and stiffness
5.4.2 Normal (vertical) force calculations
5.4.3 Longitudinal force in a free rolling tyre (rolling resistance)
5.4.4 Braking force
5.4.5 Driving force
5.4.6 Generation of lateral force and aligning moment
5.4.7 The effect of slip angle
5.4.8 The effect of camber angle
5.4.9 Combinations of camber and slip angle
5.4.10 Overturning moment
5.4.11 Combined traction and cornering (comprehensive slip)
5.4.12 Relaxation length

5.5 Experimental testing

5.6 Tyre modelling
5.6.1 Overview
5.6.2 Calculation of tyre geometry and velocities
5.6.3 Road surface/terrain definition
5.6.4 Interpolation methods
5.6.5 The 'Magic Formula' tyre model
5.6.6 The Fiala tyre model
5.6.7 Tyre models for durability analysis

5.7 Implementation with MBS
5.7.1 Virtual tyre rig model

5.8 Examples of tyre model data

5.9 Case study 6 – Comparison of vehicle handling tyre models

6 Modelling and assembly of the full vehicle

6.1 Introduction

6.2 The vehicle body

6.3 Measured outputs

6.4 Suspension system representation
6.4.1 Overview
6.4.2 Lumped mass model 332
6.4.3 Equivalent roll stiffness model 333
6.4.4 Swing arm model 335
6.4.5 Linkage model 335
6.4.6 The concept suspension approach 336
6.5 Modelling of springs and dampers 339
6.5.1 Treatment in simple models 339
6.5.2 Modelling leaf springs 340
6.6 Anti-roll bars 342
6.7 Determination of roll stiffness for the equivalent roll stiffness model 345
6.8 Aerodynamic effects 349
6.9 Modelling of vehicle braking 351
6.10 Modelling traction 356
6.11 Other driveline components 358
6.12 The steering system 361
6.12.1 Modelling the steering mechanism 361
6.12.2 Steering ratio 363
6.12.3 Steering inputs for vehicle handling manoeuvres 366
6.13 Driver behaviour 368
6.13.1 Steering controllers 369
6.13.2 A path following controller model 373
6.13.3 Body slip angle control 377
6.13.4 Two-loop driver model 379
6.14 Case study 7 – Comparison of full vehicle handling models 380
6.15 Summary 393

7 Simulation output and interpretation 395
7.1 Introduction 395
7.2 Case study 8 – Variation in measured data 397
7.3 A vehicle dynamics overview 399
7.3.1 Travel on a curved path 399
7.3.2 The classical treatment based on steady state cornering 401
7.3.3 Some further discussion of vehicles in curved path 408
7.3.4 The subjective/objective problem 411
7.3.5 Mechanisms for generating under- and oversteer 414
7.4 Transient effects 420
7.5 Steering feel as a subjective modifier 424
7.6 Roll as an objective and subjective modifier 424
7.7 Frequency response 426
7.8 The problems imposed by … 428
7.8.1 Circuit racing 428
7.8.2 Rallying 428
7.8.3 Accident avoidance 429
7.9 The use of analytical models with a signal-to-noise ratio approach 430
7.10 Some consequences of using signal-to-noise ratio 439

8 Active systems 441
8.1 Introduction 441
8.2 Active systems 442
8.2.1 Active suspension and variable damping 443
8.2.2 Brake-based systems 447
8.2.3 Active steering systems 448
8.2.4 Active camber systems 449
8.2.5 Active torque distribution 449
8.3 Which active system? 450

Appendix A: Vehicle model system schematics and data sets 452

Appendix B: Fortran tyre model subroutines 472

Appendix C: Glossary of terms 487

References 502

Index 511