

Data Mining for Business Intelligence

Concepts, Techniques, and Applications in Microsoft Office Excel® with XLMiner®

GALIT SHMUELI NITIN R. PATEL PETER C. BRUCE

Includes Complimentary

Includes to XI. Miner

CONTENTS

Foreword		xiii	
Preface		XV	
A	Acknowledgments		xvii
1	Introduction		1
	1.1	What Is Data Mining?	1
	1.2	Where Is Data Mining Used?	2
	1.3	The Origins of Data Mining	2
	1.4	The Rapid Growth of Data Mining	3
	1.5	Why Are There So Many Different Methods?	4
	1.6	Terminology and Notation	4
	1.7	Road Maps to This Book	6
2	Overview of the Data Mining Process		9
	2.1	Introduction	9
	2.2	Core Ideas in Data Mining	9
	2.3	Supervised and Unsupervised Learning	11
	2.4	The Steps in Data Mining	11
	2.5	Preliminary Steps	13
	2.6	Building a Model: Example with Linear Regression	21
			vii

	2.7	Using Excel for Data Mining	27	
		Problems	31	
3	Data	Exploration and Dimension Reduction	35	
	3.1	Introduction	35	
	3.2	Practical Considerations	35	
		Example 1: House Prices in Boston	36	
	3.3	Data Summaries	37	
	3.4	Data Visualization	38	
	3.5	Correlation Analysis	40	
	3.6	Reducing the Number of Categories in Categorical Variables	41	
	3.7	Principal Components Analysis	41	
		Example 2: Breakfast Cereals	42	
		Principal Components	45	
		Normalizing the Data	46	
		Using Principal Components for Classification and Prediction	49	
		Problems	51	
4	Eval	Evaluating Classification and Predictive Performance		
	4.1	Introduction	53	
	4.2	Judging Classification Performance	53	
		Accuracy Measures	53	
		Cutoff for Classification	56	
		Performance in Unequal Importance of Classes	60	
		Asymmetric Misclassification Costs	61	
		Oversampling and Asymmetric Costs	66	
		Classification Using a Triage Strategy	72	
	4.3	Evaluating Predictive Performance	72	
		Problems	74	
5	Muli	tiple Linear Regression	75	
	5.1	Introduction	75	
	5.2	Explanatory vs. Predictive Modeling	76	
	5.3	Estimating the Regression Equation and Prediction	76	
		Example: Predicting the Price of Used Toyota Corolla Automobiles	77	
	5.4	Variable Selection in Linear Regression	81	
		Reducing the Number of Predictors	81	
		How to Reduce the Number of Predictors	82	
		Problems	86	
6	Thre	ee Simple Classification Methods	91	

		CONTENTS	IX
	6.1	Introduction	91
		Example 1: Predicting Fraudulent Financial Reporting	91
		Example 2: Predicting Delayed Flights	92
	6.2	The Naive Rule	92
	6.3	Naive Bayes	93
		Conditional Probabilities and Pivot Tables	94
		A Practical Difficulty	94
		A Solution: Naive Bayes	95
		Advantages and Shortcomings of the naive Bayes Classifier	100
	6.4	k-Nearest Neighbors	103
		Example 3: Riding Mowers	104
		Choosing k	105
		k-NN for a Quantitative Response	106
		Advantages and Shortcomings of k-NN Algorithms	106
		Problems	108
7	Clas	ssification and Regression Trees	111
	7.1	Introduction	111
	7.2	Classification Trees	113
	7.3	Recursive Partitioning	113
	7.4	Example 1: Riding Mowers	113
		Measures of Impurity	115
	7.5	Evaluating the Performance of a Classification Tree	120
		Example 2: Acceptance of Personal Loan	120
	7.6	Avoiding Overfitting	121
		Stopping Tree Growth: CHAID	121
		Pruning the Tree	125
	7.7	Classification Rules from Trees	130
	7.8	Regression Trees	130
		Prediction	130
		Measuring Impurity	131
		Evaluating Performance	132
	7.9	Advantages, Weaknesses, and Extensions	132
		Problems	134
8	Logistic Regression		137
	8.1	Introduction	137
	8.2	The Logistic Regression Model	138
		Example: Acceptance of Personal Loan	139
		Model with a Single Predictor	141

X CONTENTS

		Estimating the Logistic Model from Data: Computing Parameter	
		Estimates	143
		Interpreting Results in Terms of Odds	144
	8.3	Why Linear Regression Is Inappropriate for a Categorical Response	146
	8.4	Evaluating Classification Performance	148
		Variable Selection	148
	8.5	Evaluating Goodness of Fit	150
	8.6	Example of Complete Analysis: Predicting Delayed Flights	153
		Data Preprocessing	154
		Model Fitting and Estimation	155
		Model Interpretation	155
		Model Performance	155
		Goodness of fit	157
		Variable Selection	158
	8.7	Logistic Regression for More Than Two Classes	160
		Ordinal Classes	160
		Nominal Classes	161
		Problems	163
9	Neui	ral Nets	167
	9.1	Introduction	167
	9.2	Concept and Structure of a Neural Network	168
	9.3	Fitting a Network to Data	168
		Example 1: Tiny Dataset	169
		Computing Output of Nodes	170
		Preprocessing the Data	172
		Training the Model	172
		Example 2: Classifying Accident Severity	176
		Avoiding overfitting	177
		Using the Output for Prediction and Classification	181
	9.4	Required User Input	181
	9.5	Exploring the Relationship Between Predictors and Response	182
	9.6	Advantages and Weaknesses of Neural Networks	182
		Problems	184
10	Disc	riminant Analysis	187
	10.1	Introduction	187
	10.2	Example 1: Riding Mowers	187
	10.3		188
	10.4	Distance of an Observation from a Class	188
	10.5	Fisher's Linear Classification Functions	191

		CON	NTENTS	χi
	10.6	Classification Performance of Discriminant Analysis		194
		Prior Probabilities		195
	10.8	Unequal Misclassification Costs		195
	10.9	Classifying More Than Two Classes		196
		Example 3: Medical Dispatch to Accident Scenes		196
	10.10	Advantages and Weaknesses		197
		Problems		200
11	Asso	ociation Rules		203
	11.1	Introduction		203
	11.2	Discovering Association Rules in Transaction Databases		203
		Example 1: Synthetic Data on Purchases of Phone Faceplates		204
		Generating Candidate Rules		204
		The Apriori Algorithm		205
	11.5	Selecting Strong Rules		206
		Support and Confidence		206
		Lift Ratio		207
		Data Format		207
		The Process of Rule Selection		209
		Interpreting the Results		210
		Statistical Significance of Rules		211
	11.6	Example 2: Rules for Similar Book Purchases		212
	11.7	Summary		212
		Problems		215
12	Clus	eter Analysis		219
	12.1	Introduction		219
	12.2	Example: Public Utilities		220
	12.3	Measuring Distance Between Two Records		222
		Euclidean Distance		223
		Normalizing Numerical Measurements		223
		Other Distance Measures for Numerical Data		223
		Distance Measures for Categorical Data		226
		Distance Measures for Mixed Data		226
	12.4	Measuring Distance Between Two Clusters		227
	12.5	Hierarchical (Agglomerative) Clustering		228
		Minimum Distance (Single Linkage)		229
		Maximum Distance (Complete Linkage)		229
		Group Average (Average Linkage)		230
		Dendrograms: Displaying Clustering Process and Results		230
		Validating Clusters		231

xii CONTENTS

	Limitations of Hierarchical Clustering	233
12.6	Nonhierarchical Clustering: The k-Means Algorithm	23:
	Initial Partition into k Clusters	234
	Problems	23
13 Cas	es	241
13.1	Charles Book Club	24:
13.2	German Credit	250
13.3	Tayko Software Cataloger	254
13.4	Segmenting Consumers of Bath Soap	258
13.5	Direct-Mail Fundraising	262
13.6	Catalog Cross-Selling	265
13.7	Predicting Bankruptcy	267
References		271
Index		273