Head First

Object-Oriented
Analys Design

- Turn your
‘*_\‘. requirements

% and designs into
4

serious software

Improve your
communication skills with
UML and use cases

B

Bend your mind
around dozens
of 00 exercises

Load important 00
, design principles straight
into your brain

Discover how abstraction,
aggregdation, and delegation
helped Mary get around
Objectville

Avoid leaving
your customers
unsatisfied

O REILLY" Brett D. McLaughlin, Gary Pollice & David West



Table of Contents (summary)

Intro XXt
1 Great Software Begins Here: well-designed apps rock 1
2 Give Them What They Want: gathering requerements 55
3 I Love You, You're Perfect... Now Change: requirements change 111
4 Taking Your Software Into the Real World: analysis 145
3 Part 1: Nothing Ever Stays the Same: good design 197
Interlude: OO CATASTROPHE 221
Part 2: Give Your Software a 30-mimate Workout: flexible softvare 233
6 “My Name 1s Art Vandelay™: solving really fig problems 279
7 Bringing Order te Chaos: architecture 323
8 Originality is Overrated: design princijles 375
9 The Software is Sull for the Customer: deration and testing 423
10 Puddng It All Together: e voal&d lfecyde 483
Appendix It leffovers 557
Appendix II: welcome to objecteille 375

Table of Contents (the rea] thing)

Intro

Your brain on QOOA&D. Here you are trying to Jearn something, while here your
brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking,
“Better leave room for more important things, like which wild animals to avoid and whether
haked snowboarding is a bad idea.” So how do you trick your brain into thinking that your

life depends on knowing object-oriented analysis and design?

Who 1s this book for? xxXiv
We know what you're thinking XXV
Metacognition xxvil
Bend your brain into submission XXiX
Read Me XXX
The Technical Team XXXil

Acknowledgements poearil



table of contents

well-designed apps rock

Great Software Begins Here

So how do you really write great software? It's never easy trying

to figure out where to start. Does the application actually do what it's supposed to?
And what about things like duplicate code-~that can't be good, can it? It's usually pretty
hard to know what you should work on first, and still make sure you don't screw
everything else up in the process. No worries here, though. By the time you're done
with this chapter, you'll know how to write great software, and be well on your way

to improving the way you develop applications forever. Finally, you'll understand why

OOAD is a four-letter word that your mother actually wanis you to know about.

Rock and roll is forever! 2

Rick’s shiny new application 3

What'’s the FIRST thing vou'd change? 8
Great Software is... 10
How am I supposed to know where to start? Great software in 3 easy steps 13
I feel like every time I get a new project to Focus on functionality first 18

work an, everyone’s got a different opinion ‘
o o o St S 1 st i 2
st vy g vt 1 i Looking orproblrns 2
in Rick's app? Analysis 26
=4 Apply basic OO principles 31
o

Design once, design twice 36
Honw easy Is it to change your applications? 38
Encapsulate what varies 41
Delegation 43
Great software at last for now? 16
OOA&D is about writing great software 49
Bullet Points 50




gathering requirements
Give Them What They Want

Everybody loves a satisfied customer. You already know that the first

table of contents

step in writing great software is making sure it does what the cutomer wants it to. But

how do you figure out what a customer really wants? And how do you make sure that

the customer even knows what they really want? That's where good requirements

come in, and in this chapter, you're going to learn how to satisfy your customer by

making sure what you deliver is actually what they asked for. By the time you're done,

all of your projects will be “satisfaction guaranteed,” and you'll be well on your way to

writing great software, every time.

Todd ami Gina’s Poa Poor version 2.0 s
Requirements List

1 the Toddand Sinas Jog Boor version 20

1all What the Poor Poes
L 2AE 1. Fido barks to be let out.
do¢ 2. Todd or &ina hears Fido barking,

™ 3 Todd or oina Presses the button on the
50%  remote control,

:‘ICE 4. The dog daor opens.
- 5. Fido aoes ontside.
— 6. Fido does his business.
7 Fido goes back fnside,
8. The door shuts avtomaticafly,

You've got a new programming gig

Test drive

Incorrect usage (sort of)

What is a requirement?

Creating a requirements list

Plan for things going wrong

Alternate paths handle system problems
Introducing use cases

One use case, three parts

Check your requircments against your use cases
Your system must work in the real world
Getting to know the Happy Path
OOA&D Toolbex

and remote ave
Part of {he

syS“Ecm, o i-'-'ls.ié_f

the system.

56
59
61
62

xi



table of contents

requirentents change

1 Love You, You’re Perfect... Now Change

Think you’ve got just what the customer wanted?

Not so fast... So you've talked to your customer, gathered requirements, written
out your use cases, and delivered a killer application. It's time for a nice relaxing
cocktail, right? Right... until your customer decides that they really wanted something
different than what they told you. They love what you've done, really, but it's not
quite good enough anymore. In the real world, requirements are always changing,

and it's up to you to roll with these changes and keep your customer satisfied.

You're a hero! 112
You're a goat! 113
The one constant in software analysis & design 115
Original path? Alternate path? Who can tell? 120
Use cases have to make sense to you 122
Start to finish: a single scenario 124
Confessions of an Alternate Path 126
Finishing up the requirements list 130
Duplicate code is a bad idea 138
Final test drive 144
Write your own design principle 141
GOA&D Toolbox ' 142

% .
public void pressButton() { .
System.out.println(“Pressing the remcte control button...”)
. if (door.isoOpen(}} {
; door.close(};
} else {
door.open{) !

final-Ti PYE new-Timer ()
timer. schedule{new TimerTask(} {
. prblic void xun(l {

Remote.java

Xii



table of contents

analysis
Taking Your Software into the Real World

It’s time to graduate to real-world applications.

Your application has to do more than work on your own personal development machine,
finely tuned and perfectly setup; your apps have to work when real people use them.
This chapter is all about making sure that your software works in a real-world context.
You'll learn how textual analysis can take that use case you've been working on and
turn it into classes and methods that you know are what your customers want. And

when you're done, you too can say: "l did it! My software is ready for the real world!"

Once dog, two dog, three dog, four.. 146

Your software has a context 147

Once I knew the classes and Identify the problem 148
operations that I needed, I Plan a solution 149

went back and updated my class

diagram. A tale of two coders 156

Delegation Detour 160

The power of loosely coupled applications 162

Pay attention to the nouns in your use case 167

From good analysis to good classes... 180

Class diagrams dissected 182

Class diagrams aren’t everything 187

Bullet Points 191

I Lhis contexts
Liing 90 wrond 3
fot move ten

= |, the veal world, theve ave
i dots, cats, vodents, and a host
of other problems, alt set teo

The Rel orld sevew up Your sofdwave.

xiii



table of contents

pood design = flexible software

Nothing Ever Stays the Same

Change is inevitable. No matter how much you like your software right
(Part 1) now, it's probably going to change tomorrow. And the harder you make it for

your software to change, the more difficult it's going to be to respond to your

customer’s changing needs. In this chapter, we're going to revisit an old friend,

try and improve an existing software project, and see how small changes can

turn into big problems. In fact, we're going to uncover a problem so big that it will

take a TWO-PART chapter to salve it!

Rick’s Guitars is expanding 198
Abstract classes 201
Class diagrams dissected {again) 206
UML Cheat Sheet 207
Design problem tipofls 213
3 steps to great sofiware (revisited) 215

3 rterlie) 8 BATARTRABLES

Objectvilie's Favorite Quiz Show

Xiv



5 (part 2)

pood design = flexible software

Back to Rick’s search tool

A closer look at the searchi} method
The benefits of analvsis

Classes are about behavior

Death of a design (decision]

Turn bad design decisions into good ones

“Double encapsulation™ in Rick’s software

Never be afraid to make mistakes

Rick’s flexible application

Test driving well-designed sottware

How easy is it to change Rick’s software?
The Great Ease-of-Change Challenge

A cohesive class does one thing really well
The design/cohesion lifecvcle

Great software is “good enough”

O0A&D Toolbox

table of contents

Give Your Software a 30-minute Workout

Ever wished you were just a bit more flexible?

When you run into problems making changes to your application, it probably
means that your software needs to be more flexible and resilient. To help stretch
your application out, you're going to do some analysis, a whole lot of design, and
learn how OO principles can really loosen up your application. And for the grand
finale, you'll see how higher cohesion can really help your coupling. Sound

interesting? Turn the page, and let's get back to fixing that inflexible application.

234
237
238
241
246

258
261
265
266
269
272



table of conten

is

Tws B4 PROGLEM

vealty ok 3

tollerhi

[

FuneHionaliies, wheve eath

vieee oF Fonchioraliby s vedly

5 smaller peoblem ¢

XVi

w iks own

selving really big problems

“My Name is Art Vandelay... | am an Architect”
It’s time to build something REALLY BIG. Are you ready?

You've got a ton of taols in your OOA&D toolbox, but how do you use those tools
when you have to build something really big? Well, you may not realize it, but
you've got everything you need to handie big problems. We'll learn about some
new tools, like domain analysis and use case diagrams, but even these new tools
are based on things you already know about—like listening to the customer and
understanding what you're going to build before you start writing code. Get ready. ..

it's time to start playing the architect.

Salving big problems 280
It’s all in how you lock at the big problem 281
Requirements and use cases are a good place to start... 286
Commonality and variability 287
Figure out the features 290
The difference between features and requirements 292
Use cases don’t always help you see the big picture 294
Use case diagrams 206
The Little Actor 301
Actors are people, too (well, not always) 302
Let's do a little domain analysis 307
Divide and conquer 309
Don’t forget who the customer really is 313
What's a design pattern? 315
The power of OOA&D {and a litde common sense) 318
OO0A&D Toalhox 320

Big
Problem



architecture

Bringing Order to Chaos

table of contents

You have to start somewhere, but you better pick the right
somewhere! You know how to break your application up into lots of small

probiems, but all that means is that you have LOTS of small problems. In this chapter,

we're going to help you figure out where to start, and make sure that you don't waste

any time working on the wrong things. It's time to take all those little pieces laying

around your workspace, and figure out how to turn them into a well-ordered, well-

designed application. Along the way, you'll learn about the ali-important 3 Qs of

architecture, and how Risk is a lot more than just a cool war game from the '80s.

Not a chance in hell of
coming in on time.

One in a hundred that
you get if right

Only a few things can
go really wrong. .

As close toasure g
thing as software gets!

Feeling a little overwhelmed?

We need an architecture

Start with functionality

What's architecturally significant?

The three Qs of architecture

Reducing risk

Scenarios help reduce risk

Focus on one feature at a time

Architecture is your design structure
Commonality revisited

Commonality Analysis: the path ro flexible software
What does it mean? Ask the customer
Reducing risk helps you write great software

Bullet Points

xvii



table of contents

design principles
Originality is Overrated

Imitation is the sincerest form of not being stupid. There's
nothing as satisfying as coming up with a completely new and criginal solution to a
problem that's been troubling you for days—until you find out someone else solved
the same problem, long before you did, and did an even better job than you did! In
this chapter, we're going to look at some design principles that people have come up
with over the years, and how they can make you a better programmer. Lay aside your

thoughts of “doing it your way"; this chapter is about doing it the smarter, faster way.

Design principle roundup 376
The Open-Closed Principle (OCP: 377
The OCE, step-by-step 379
The Open f%"jy The Don't Repeat Yourself Principle (DRY) 382
Pemtiple DRY is about one requirement in one place 384
The Single Responsibility Principle (SRP? 390
Spotting multiple responsibilities 397
Going [rom multiple responsibilities to a single responsibility 395
The Liskov Substitution Principle (LSP) 400
Misusing subclassing: a case study in in misuing inheritance 401
, LSP reveals hidden problems with your inheritance structure 402
Ti\ﬁ Don '!; RCPE&E .
Yourself Prin tiple Subtypes must be substitutable for their base types 403
Violating the LSP makes for confusing code 404
Delegate functionality to another class 406
Use composition to assemble behaviors from other classes 408
Aggregation: composition, without the abrupt ending 412
The S 51: v Aggregation versus compasition 413
¢ Sin
f{cs?onsibim;\j Printiple Inheritance is just one option 414
Bullet Points 417
OOA&D Toolbox 418
The Liskov
Substitution
Prineiple

xviii



iterating and testing

table of contents

The Software is Still for the Customer

It’s time to show the customer how much you really care.

Nagging bosses? Worried clients? Stakeholders that keep asking, "Will it be done on

time?” No amount of well-designed code will please your customers; you've got to

show them something working. And now that you've got a solid OO programming

toolkit, it's time to learn how you can prove to the customer that your software

works. In this chapter, we learn about two ways to dive deeper into your software’s

functionality, and give the customer that warm feeling in their chest that makes them

say, Yes, you're definitely the right developer for this job!

Unit
type: String ;‘j the propeciy;
properties: Map e VI Loy
H PO unity gys

id: et vepresantad s
name: String = fariables outside of
weapons: Weapon * Bre prepectes ddap
sefType(String)

Sam fiaured that i
would get sed in the ilnad
tonstrutlor, 5o ne need
for & setid0) method.

getType(): String

setProperty(String, Object)
getProperty(String): Object
getld(: int
seiNamelString)
getNamel): String
addWeaponWeapon
getWeapons(l: Weapon

Each of the rew
properties aets its
owm set ol methods

Your toolbox is filling up

You write great software iteratively
Iterating deeper: two basic choices
Feature driven development

Use casce driven development

Two approaches to development
Analysis of a feature

Writing test scenarios

Test driven development
Commonality Analsysis (redux)
Emphasizing commonality
Emphasizing encapsulation

Match your tests to your design

‘Test cases dissected...

Prove yourself to the customer

We've been programming by contract
Programming by contract is about trust
Defensive programming

Break your apps into smaller chunks of functionality
Bullet Points

O0A&D Toolbox

424
426
427
128
429
430
434
437
110
442
446
448
452

460
462

Xix



table of contents

the coakd Iifecycle
Putting It All Together

Are we there yet? we've been working on lots of individual ways to
improve your software, but now it's time to put it ali together. This is it, what
you've been waiting for: we're going to take everything you've been learning,
and show you how it’s all reaily part of a single process that you can use over

and over again to write great software.

Developing software, OOA&D style 484
The Objectville Subway problem 488
Ohjectville Subway Map 490
Feature lists : 493
Use cases reflect usage, features reflect functionality 449
Now start to iterate 503
A closer look at representing a subway 05
To use a Line, or not 1o use a Line 514
Points of interest on the Objectville Subway (class) 320
Protecting vour classes 523
Break time 53]
Back to the requircments phase 533
Focus on code, then focus on cusiomers 335
Lteration makes problems easier ) 539
What does a route look like? 544
Check out Objectville for yourself! 548
Tteration #3, anvone? 531
The journey’s not aver., 555

Talk to the Customer

Feature Driven Development

g st Drlven evelop ment

XX



table «:f confents

appendix i: leftovers

The Top Ten Topics (we didn’t cover)

Believe it or not, there’s still more. Yes, with over 550
pages under your beit, there are still things we couldn't cram in. Even
though these last ten topics don't deserve more than a mention, we didn't
want to let you out of Objectville without a little more information on each
one of them. But hey, now you've got just a little bit more to talk about
during commercials of CATASTROPHE... and who doesn’t love some

stimulating OOA&D talk every now and then?

#1. I5-A and HAS-A 558

#2. Use case formats 560

#3. Anti-patterns 563

#4. CRC cards 564

R T #5. Metrics 566
A,:;ﬁt;;;r;safcfg; sgﬁﬁgfsﬁ§§EEE§;¢ #6. Sequence diagrams h67
;::gg;:};*jgﬁd":’;gﬁ,’ﬁi oF #7. State diagrams 568
S #8. Unit testing 570
#9. Coding standards and readable code 572

#10. Refactoring 574

Class: DogDoor
Pescription: Represents the physical dog door. This provides an interface
4o the hardware that actually tontrols the door.

i
£
]
;
i
i

Responsibilities:
Name Gollaborator
N} Ofcn 'ch door I
Be sure You wrif;;\"—" Close the door ’;‘\
down {:hings {hat \ \
this elass does on iks N
owr, as well as Lhinas !
it tollsborales w‘z{hﬁ \‘! me,- st
other elasses on. these

xxi



table of contents

xXii

This is how You show @
elass in & tlass disgram:

Twat's the vay that

ML lets you cepresent
debails soout Lhe tlasses

i Yo a??h“’a{';o}‘ \&

These ave the member
vaviables of the tiass:
&an% ot has & name,
and Hhen @ Lyee
afker the tolon.

These sre the
methods of Lhe
tlass. Ege, ore hge
9 rame, gngd ther,
WY Pavametays the

appendix ii: welcome to objectville

Speaking the Language of 00

Get ready to take a trip to a foreign country. it's time to

visit Objectville, a land where objects do just what they’re supposed to,

applications are all well-encapsulated {you'll find out exactly what that means

shortly), and designs are easy to reuse and extend. But before we can get

going, there are a few things you need to know first, and a little bit of language

skilis you're going to have to learn. Don't warry, though, it won't take long, and

before you know it, you'll be speaking the language of CO like you've been

living'in the well-designed areas of Objectville for years.

UML and class diagrams

Inhentance

Polymorphism

Encapsulation

Bullet Points

This is £he name of
the elass. 4 alvays
in beld, at the top of
the tlass diaaram.

Cairplane ><—

speed: int

getSpeed(): int
setSpeed(int)

ethod {ak
then 3 redur
Q'chr the o

€5, and

n{-_m

Orlon

\ K class didgram

/ Z:}is fine :gP&va{:cs

2 membey V&r;’;bjcs

om 'titt melh,
the ¢lass. ods of

makes it veally easy

Lo se the big picture: you Lén easily

Il whak 2 elass does ata 5131"\&:-
?ou :an even leave out the vaviables
and/or methods i£ ik helps you
C,omrnuni&a{x petter



