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Life began as a self-replicating structure 6
A prokaryotic cell consists of a single compartment 7

Prokaryotes are adapted for growth under many diverse
conditions ¢

A eukaryotic cell contains many membrane-delimited
compartments 9

Membranes allow the cytoplasm to maintain
compartments with distinct environments 10

The nucleus contains the genetic material and is
surrounded by an envelope 12

The plasma membrane allows a cell to maintain
homeostasis 13

Cells within cetls: Organelles bounded by envelopes may
have resulted from endosymbiosis 15

DNA is the cellutar hereditary material, but there are
other forms of hereditary information 17

Cells require mechanisms to repair damage to DNA 17
Mitochendria are energy factories 18
Chloroplasts power plant cells 19

Organelles require mechanisms for specific localization of
proteins 20

Proteins are transported to and through membranes 21

Protein trafficking moves proteins through the ER and
Golgi apparatus 22
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Protein folding and unfolding is an essential feature of
all cells 23

The shape of a eukaryotic cell is determined by its
cytoskeleton 24

Localization of cell structures is important 25

Signal transduction pathways execute predefined
responses 26

All organisms have cells that can grow and divide 27

Differentiation creates specialized cell types, including
terminally differentiated cells 28
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Channels and carriers are the main types of membrane
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Hydration of ions infiuences their flux through
transmembrane pores 35

Electrochemical gradients across the cell membrane
generate the membrane potential 36

K+ channels catalyze selective and rapid ion
permeation 38

Different K+ channels use a similar gate coupled to
different activating or inactivating mechanisms 42

Voltage-dependent Na+ channels are activated by
membrane depolarization and translate electrical
signals 44

Epithelial Na+ channels regulate Na+ homeostasis 47

Plasma membrane Ca2+ channels activate intracetluiar
functions 50

CL™ channels serve diverse biological functions 52
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Selective water transport occurs through aquaporin
channels 56

Action potentials are electrical signals that depend on
several types of ion channels 58

Cardiac and skeletal muscles are activated by excitation-
contraction coupling 60

Some glucose transporters are uniporters 63

Symporters and antiporters mediate coupled
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Signal sequences are recognized by the signal
recognition particle (SRP) 103

An interaction between SRP and its receptor allows
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The translocon is an aqueous channel that conducts
proteins 105

Translation is coupled to translocation for most

eukaryotic secretory and transmembrane proteins 108
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Some proteins target and translocate
posttranslationally 110

ATP hydrolysis drives translocation 111

Transmembrane proteins move out of the translocation
channel and into the lipid bitayer 113

The orientation of fransmembrane proteins is determined
as they are integrated into the membrane 115
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Nuclear structure and transport 205
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Nuclei vary in appearance according to cell type and
organism 207

Chromosomes occupy distinct territaries 209

The nucleus contains subcompartments that are not
membrane-bounded 210

Some processes occur at distinct nuclear sites and may
reflect an underlying structure 212

The nucleus is bounded by the nuclear envelope 213
The nuclear lamina underlies the nuclear envelope 214

Large molecules are actively transported between the
nucleus and cytoplasm 216

Nuclear pore complexes are symmetrical channels 217

Nuclear pore complexes are constructed from
nucleoporing 220

Proteins are sslectively transported into the nucleus
through nuclear pores 222

Nuclear localization sequences target proteins to the
nucleus 224

Cytoplasmic NLS receptors mediate nuclear protein
import 224

Export of proteins from the nucleus is also receptor-
mediated 226

The Ran GTPase controls the direction of nuclear
transport 228

Multiple models have been proposed for the mechanism
of nuclear transport 230

Nuclear transport can be requlated 232

Multiple classes of RNA are exported from the
nucteus 233

Ribosomal subunits are assembled in the nucleotus and
exported by exportin 1 235

tRNAs are exported by a dedicated exportin = 236

Messenger RNAs are exported from the nucleus as RNA
protein complexes 237

hnRNPs move from sites of processing to NPCs 239
mRNA export reguires several novel factors 239

U snRNAs are exported, modified, assembled into
complexes, and imported 241

Precursors to microRNAs are exported from the nucleus
and processed in the cytoplasm 242
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Prokaryotes have several secretion pathways 726

Pili and flagella are appendages on the cell surface of
most prokaryotes 728

Prokaryotic genomes contain chromosomes and mobile
DNA elements 731

The bacterial nucleoid and cytoplasm are
highly ordered 733

Bacterial chromosomes are replicated in specialized
replication factories 735

Prokaryotic chromosome segregation occurs in the
absence of a mitotic spindle 737

Prokaryotic cell division involves formation of a complex
cytokinetic ring 739

Prokaryotes respond to stress with complex
developmental changes 742

Some prokaryotic life cycles include obligatory
developmental changes 746

Some prokaryotes and eukaryotes have endosymbiotic
relationships 747

Prokaryotes can colonize and cause disease in higher
organisms 749

Biofilms are highly organized communities of
microbes - 751
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How plants grow 765

The meristem provides new growth modules in a
repetitive manner 766

The plane in which a cell divides is important for tissue
organization 768

Cytoplasmic structures predict the plane of cell division
hefore mitosis begins 770

Plant mitosis occurs without centrosomes 772

The cytokinetic apparatus builds a new wall in the plane
anticipated by the preprophase band 774

Secretion during cytokinesis forms the cell plate 776

Plasmodesmata are intercellular channels that connect
plant cells 777

Cell expansion is driven by swelling of the vacuole 779

The large forces of turgor pressure are resisted by the
strength of cellulose microfibrils in the cell wall 780

The cell wall must be loosened and reorganized to allow
growth 782

Cellutose is synthesized at the plasma membrane, not
preassembled and secreted like other wall
components 784

Cortical microtubules are thought to organize
components in the cell wall 785

Cortical microtubules are highly dynamic and can change
their orientation 787

A dispersed Golgi system delivers vesicles to the cell
surface for growth 790

Actin filaments form a network for delivering materials
around the cell 791

Differentiation of xylem cells requires extensive
specialization 793

Tip growth altows plant cells to extend processes 795
Plants contain unigque organelles called plastids 797

Chloroplasts manufacture food from
atmospheric CO, 799
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