

SIXTH EDITION

Statics and Strength of Materials

H. W. MORROW ROBERT P. KOKERNAK

Contents

xiii

Application Sidebars

List of Symbols

Chapter 1	BASIC CONCEPTS 1
•	1.1 Introduction, 1
	1.2 Fundamental Quantities: Units, 2
	1.3 SI Style and Usage, 3
	1.4 Conversion of Units, 4
	1.5 Numerical Computations, 5
	1.6 Trigonometric Functions, 8
	1.7 Trigonometric Formulas, 17
	1.8 Linear Equations and Determinants, 24
Chapter 2	RESULTANT OF CONCURRENT FORCES IN A PLANE 41
-	2.1 Introduction, 41
	2.2 Graphical Representation of Forces: Vectors, 42
	2.3 Resultant of Two Concurrent Forces: Vectors, 42
	2.4 Resultant of Three or More Concurrent Forces, 49
	2.5 Components of a Force Vector, 52
	2.6 Resultant of Concurrent Forces by Rectangular Components, 57
	2.7 Difference of Two Forces: Vector Differences, 62
Chapter 3	EQUILIBRIUM OF CONCURRENT FORCES IN A PLANE 66
-	3.1 Conditions for Equilibrium, 66
	3.2 Action and Reaction, 67
	3.3 Space Diagram, Free-Body Diagram, 68
	3.4 Construction of a Free-Body Diagram, 68

	3.5	Three Concurrent Forces in Equilibrium, 77		
	3.6	Four or More Forces in Equilibrium, 85		
	3.7	Equilibrium by Rectangular Component Method, 87		
Chapter 4	RESULTANT OF NONCONCURRENT FORCES IN A PLANE 96			
•	4.1	Introduction, 96		
	4.2	Transmissibility, 97		
	4.3	Moment of a Force, 97		
	4.4	Theorem of Moments, 100		
	4.5	Resultant of Parallel Forces, 107		
	4.6	Resultant of Nonparallel Forces, 110		
	4.7	Moment of a Couple, 114		
	4.8	Resolution of a Force into a Force and Couple, 116		
	4.9	Resultant of Distributed Loading, 120		
Chapter 5	EQ	UILIBRIUM OF A RIGID BODY 124		
•	5.1	Introduction, 124		
	5.2	Support Conditions for Bodies in a Plane, 125		
	5.3	Construction of Free-Body Diagrams, 127		
	5.4	Equations for Equilibrium of a Rigid Body, 130		
	5.5	Equilibrium of a Two-Force Body, 145		
	5.6	Equilibrium of a Three-Force Body, 145		
	5.7	Statical Determinacy and Constraint of a Rigid Body, 149		
Chapter 6	FO	RCE ANALYSIS OF STRUCTURES AND MACHINES 154		
•	6.1	Introduction, 154		
	6.2			
	6.3			
	6.4			
	6.5			
	6.6			
	6.7	Frames and Machines, 182		
Chapter 7	FO	RCES IN SPACE 201		
	7.1	Introduction, 201		
	7.2			
	7.3			
	7.4			
	7.5	•		
	7.6	•		
	7.7	• :		
	7.8	, ,		

i.

Chapter 8	FRICTION	234
------------------	----------	-----

- 8.1 Introduction, 234
- 8.2 Dry or Coulomb Friction, 235
- 8.3 Angle of Friction, 238
- 8.4 Wedges, 245
- 8.5 Square-Threaded Screws: Screw Jacks, 246
- 8.6 Axle Friction: Journal Bearings, 251
- 8.7 Special Applications, 254
- 8.8 Rolling Resistance, 258

Chapter 9 CENTER OF GRAVITY, CENTROIDS, AND MOMENTS OF INERTIA OF AREAS 263

- 9.1 Introduction, 263
- 9.2 Center of Gravity, 264
- 9.3 Centroid of a Plane Area, 265
- 9.4 Centroids by Inspection, 268
- 9.5 Centroids of Composite Areas, 269
- 9.6 Centroids of Structural Cross Sections, 274
- 9.7 Moment of Inertia of a Plane Area, 286
- 9.8 Parallel-Axis Theorem, 290
- 9.9 Moment of Inertia of Composite Areas, 291
- 9.10 Polar Moment of Inertia, 307
- 9.11 Radius of Gyration, 308
- *9.12 Determination of Centroids by Integration, 309
- *9.13 Determination of Moments of Inertia by Integration, 314

Chapter 10 INTERNAL REACTIONS: STRESS FOR AXIAL LOADS 319

- 10.1 Introduction, 319
- 10.2 Internal Reactions, 323
- 10.3 Stress, 329
- 10.4 Stress in an Axially Loaded Member, 331
- 10.5 Average Shear Stress, 336
- 10.6 Bearing Stress, 337
- 10.7 Problems Involving Normal, Shear, and Bearing Stress, 343
- 10.8 Allowable Stress, Factor of Safety, 351
- 10.9 Further Analysis of Axial Loads: Stresses on Oblique Sections, 358

^{*}Sections denoted by an asterisk indicate material that can be omitted without loss of continuity.

14.5

14.6

Chapter 11		IN FOR AXIAL LOADS: HOOKE'S LAW 364
	11.1	Axial Strain, 365
	11.2	Tension Test and Stress-Strain Diagram, 366
	11.3	Hooke's Law, 372
	11.4	Axially Loaded Members, 376
	11.5	Statically Indeterminate Axially Loaded Members, 381
	11.6	Poisson's Ratio, 388
	11.7	Thermal Deformation: Thermally Induced Stress, 389
	11.8	Additional Mechanical Properties of Materials, 393
	11.9	Strain and Stress Distributions: Saint-Venant's Principle, 396
		Stress Concentrations, 398
	11.11	Repeated Loading, Fatigue, 402
Chapter 12	SHEA	R STRESSES AND STRAINS: TORSION 405
	12.1	Introduction, 405
	12.2	Shearing Stress on Planes at Right Angles, 406
	12.3	Shearing Strains, 406
	12.4	Hooke's Law for Shear, 407
	12.5	Torsion of a Circular Shaft, 408
	12.6	Further Comments on the Torsion of a Circular Shaft, 412
	12.7	Problems Involving Deformation and Stress in a Circular Shaft, 414
	12.8	Torsion Test, 419
	12.9	Power Transmission, 420
	12.10	Flange Couplings, 427
Chapter 13	SHEA	AR FORCES AND BENDING MOMENTS IN BEAMS 435
	13.1	Introduction, 435
	13.2	Types of Beams, 436
	13.3	Beam Reactions, 437
	13.4	Shear Forces and Bending Moments in Beams, 439
	13.5	Shear-Force and Bending-Moment Diagrams, 449
	13.6	Relations Among Loads, Shear Forces, and Bending Moments, 453
		
Chapter 14		DING AND SHEARING STRESSES IN BEAMS 469
	14.1	Introduction, 469
	14.2	Pure Bending of a Symmetric Beam, 470
	14,3	Deformation Geometry for a Symmetric Beam in Pure Bending, 472
	14.4	Hooke's Law: Distribution of Bending Stress, 473

Bending Stress Formula: Flexure Formula, 474

Elastic Section Modulus, 476

550

	15.2	Bending-Moment Diagram by Parts, 551
	15.3	Moment-Area Method, 560
	15.4	Deflection of a Cantilever Beam by the Moment-Area Method, 565
	15.5	Deflection of the Simply Supported Beam by the Moment-Area Method, 572
	15.6	Superposition Method, 580
	15.7	Beam Deflections Using Computer Software, 589
	15.8	Statically Indeterminate Beams by the Superposition Method, 597
:	*15.9	
	*15.10	Singularity Functions, 613
Chapter 16	СОМ	BINED STRESSES AND MOHR'S CIRCLE 625
		Introduction, 625
	16.2	Axial Forces and Bending Moments, 626
	16.3	Unsymmetric Bending, 638
	16.4	Eccentrically Loaded Members, 642
	16.5	Plane Stress, 645
	16.6	Stress Components on an Oblique Plane, 645
	16.7	Mohr's Circle for Plane Stress, 647
	16.8	Principal Stresses, 651
	16.9	Maximum Shear Stress, 653
	16.10	Axial Stress, 655
	16.11	Biaxial Stress: Thin-Walled Pressure Vessel, 657
	16.12	Pure Shear, 662
	16.13	Combined Stress Problems, 663
Chapter 17	COLU	JMNS 670
-		Introduction, 670
		Euler Column Formula, 672
	17.3	Effective Length of Columns, 674
	17.4	Further Comments on the Euler Column Formula, 675
		Tangent Modulus Theory, 679
	17.6	Empirical Column Formulas: Design Formulas, 680
		• • • • • • • • • • • • • • • • • • • •

Problems Involving the Bending Stress Formula, 476

Shearing Stress in Beams, 489

14.11 Design of Beams for Strength, 508

Chapter 15 DEFLECTION OF BEAMS DUE TO BENDING

14.10 Shear Flow Formula, 503

15.1 Introduction, 550

Horizontal Shearing Stress Formula, 490

*14.12 Residential Design Using Tabulated Values, 524

14.7

14.8

14.9

Chapter 18 BOLTED, RIVETED, AND WELDED STRUCTURAL CONNECTIONS 690

18.1 Introduction, 690

18.2 Rivets and Bolts, 691

18.3 Methods of Failure for Bolted Joints, 691

18.4 Axially Loaded Bolted and Riveted Connections, 694

18.5 Shear Connections for Building Frames, 700

18.6 Welds, 704

18.7 Axially Loaded Welds, 707

Appendix 713

Answers to Even-Numbered Problems 751

Index 761