

Creating More Effective Graphs

NAOMI B. ROBBINS

CONTENTS

PREFACE xiii

1 INTRODUCTION 1

- 1.1 What We Mean by an Effective Graph 3
- 1.2 General Comments 10
 - 1.2.1 Captions 10
 - 1.2.2 The Data We Plot 10

Summary 11

2 LIMITATIONS OF SOME COMMON CHARTS AND GRAPHS 12

- 2.1 Pie Charts 13
- 2.2 Charts with a Three-Dimensional Effect 19
- 2.3 Bar Charts: Stacked and Grouped 29
- 2.4 Difference between Curves 35
- 2.5 Bubble Plots 43 Summary 45

3 HUMAN PERCEPTION AND OUR ABILITY TO DECODE GRAPHS 46

- 3.1 Elementary Graphical Perception Tasks 47
- 3.2 Ordered Elementary Tasks 61

3.3 Role of Distance and Detection 63 Summary 63

4 SOME MORE EFFECTIVE GRAPHS IN ONE OR TWO DIMENSIONS 64

- 4.1 Distribution of One Variable 67
 - 4.1.1 Strip Plots 67
 - 4.1.2 Dot Plots 69
 - 4.1.3 Histograms 77
 - 4.1.4 Jittering 81
- 4.2 Comparing Distributions: Box Plots 86
- 4.3 Relationship of Two Variables: Scatterplots 95
- 4.4 Time Series 101
- 4.5 Line Graphs 109
- 4.6 Comments 112 Summary 113

5 TRELLIS GRAPHICS AND OTHER WAYS TO DISPLAY MORE THAN TWO VARIABLES 114

- 5.1 Alternative Presentations of Three Variables 115
 - 5.1.1 Stacked Bar Chart 115
 - 5.1.2 Labeled Scatterplot 117
 - 5.1.3 Trellis Display 119
- 5.2 More than Three Variables 121
 - 5.2.1 Superposed Data Sets 121
 - 5.2.2 Trellis Multipanel Displays 125
 - 5.2.3 Scatterplot Matrices 127
 - **5.2.4 Mosaic Plots 131**
 - 5.2.5 Linked Micromaps 137
 - 5.2.6 Parallel Coordinate Plots 141

_		_	_			_	 $\overline{}$		_							 4.	1	 							_			_	\neg	-	_		\top	-
•			_	-				_	_				 		 	 						~				-	-	_		_	_		$\overline{}$	
H	Ι.	_	-	_			 ٠.	17							-				٠,		•	1	Ŧ.	ĸ	t-	. 1		-	-~	ΛŦ		_	~	-
н	н	٠,			•			_	_		_	7		_	$\overline{}$	\neg	 $\overline{}$			┖	,-	ਢ	,	т	₹ .	-1		100					U	۰

3.3 Role of Distance and Detection 63 Summary 63

4 SOME MORE EFFECTIVE GRAPHS IN ONE OR TWO DIMENSIONS 64

- 4.1 Distribution of One Variable 67
 - 4.1.1 Strip Plots 67
 - 4.1.2 Dot Plots 69
 - 4.1.3 Histograms 77
 - 4.1.4 Jittering 81
- 4.2 Comparing Distributions: Box Plots 86
- 4.3 Relationship of Two Variables: Scatterplots 95
- 4.4 Time Series 101
- 4.5 Line Graphs 109
- 4.6 Comments 112 Summary 113

5 TRELLIS GRAPHICS AND OTHER WAYS TO DISPLAY MORE THAN TWO VARIABLES 114

- 5.1 Alternative Presentations of Three Variables 115
 - 5.1.1 Stacked Bar Chart 115
 - 5.1.2 Labeled Scatterplot 117
 - 5.1.3 Trellis Display 119
- 5.2 More than Three Variables 121
 - 5.2.1 Superposed Data Sets 121
 - 5.2.2 Trellis Multipanel Displays 125
 - 5.2.3 Scatterplot Matrices 127
 - 5.2.4 Mosaic Plots 131
 - 5.2.5 Linked Micromaps 137
 - 5.2.6 Parallel Coordinate Plots 141

- 5.2.7 Nightingale Rose 145
- 5.2.8 Financial Plot 151
- 5.3 Comments 152 Summary 153

6 GENERAL PRINCIPLES FOR CREATING EFFECTIVE GRAPHS 154

- 6.1 Terminology 157
- 6.2 Visual Clarity 159
 - 6.2.1 Clarity of Data 159
 - 6.2.2 Clarity of Other Elements 179
- 6.3 Clear Understanding 197
- 6.4 General Strategy 224 Summary 225

7 SCALES 226

- 7.1 Aspect Ratio: Banking to 45° 229
- 7.2 Scales: Must Zero be Included? 232
- 7.3 When to Use Logarithmic Scales 243
- 7.4 Scale Breaks 257
- 7.5 Using Two Y Scales 263
- 7.6 Data Hidden in the Scales 269
- 7.7 Other Principles Involving Scales 277 Summary 291

8 APPLYING WHAT WE'VE LEARNED: BEFORE AND AFTER EXAMPLES 292

- 8.1 Grouped Bar Chart 295
- 8.2 Ten Small Graphs 299
- 8.3 Radar Chart 308

- 8.4 Multiple Pie Charts 317
- 8.5 Tables 322 Summary 327

9 SOME COMMENTS ON SOFTWARE 328

- 9.1 Statistical Software: S Language 328
- 9.2 Drawing Programs: Illustrator 330
- 9.3 Spreadsheets: Excel 331
 - 9.3.1 Moving an Axis in Excel 333
 - 9.3.2 Line Charts with Uneven Time Intervals 335
 - 9.3.3 Dot Charts from Excel 337
 - 9.3.4 Data Labels with Excel 339 Summary 341

10 QUESTIONS AND ANSWERS 342

- 1 When should I use a table, and when should I use a graph?
- 2 Should I use different graphs for presentations and for written reports?
- 3 How do graphs for data analysis and graphs for communication differ?
- 4 What should I use instead of pie charts?
- 5 What if I just want an impression of the direction of the data? Then may I use three-dimensional charts?
- 6 I use three-dimensional charts but I include data labels. That's OK, isn't it?
- 7 I want my graphs to attract the reader's attention. How should I decorate them?
- 8 Why do you think we see so many bad graphs?
- 9 When should I use each type of graph?

CONTENTS

j =

APPENDIX A: CHECKLIST OF POSSIBLE GRAPH DEFECTS 375

APPENDIX B: LIST OF FIGURES WITH SOURCES 378

REFERENCES 389

INDEX 395