Frank Oldfield

Environmental Change Key Issues and Alternative Approaches

Contents

Prej	face	page	xi
Ack	nowledgements		xiii
List	of Permissions		xiv
1 D	Defining and exploring the key questions		1
1.1	Global changes present and past		1
1.2	Earth-system science		2
1.3	The key issues: a preliminary analysis		9
1.4	Scientific methodologies		13
1.5	Linking methodologies		16
1.6	The thematic sequence		17
2 A	An introduction to models and modelling		19
2.1	The role and rationale for modelling		19
2.2	Some essential generic concepts in climate and Earth-system		
	modelling		20
2.3	Climate and Earth-system models of varying complexity		28
2.4	Subsystem models, with special reference to the oceans		30
3 7	The palaeo-record: approaches, timeframes and chronology		34
3.1	Introduction		34
3.2	Alternative approaches to the palaeo-record		35
3.3	The Vostok timeframe		36
3.4	Chronology - subdivisions, tuning and dating		37
3.5	Temporal resolution		49
4]	The Palaeo-record: archives, proxies and calibration		50
4.1	Instrumental and documentary archives of past environmental cl	hange	50
	Environmental archives and proxies		54
4.3	Sources of evidence for patterns of external climate forcing		64
	Reconstructing past changes in the world's oceans		67
	Reconstructing past impacts resulting from climate change and		
	human activities		71
4.6	The multi-proxy approach		73

Contents

5 Glacial and interglacial worlds	74
5.1 Key aspects of past variability	74
5.2 Forcings, feedbacks and phasing	78
5.3 Marine isotope stage 5e and the last (Eemian)interglacial	86
5.4 Rapid climate oscillations during the last glacial period	88
5.5 The last glacial maximum (LGM)	94
6 The transition from the last glacial maximum to the Holocene	97
6.1 The temperature record at each pole	97
6.2 Spatial patterns of temperature change	99
6.3 Changes in continental hydrology	102
6.4 Dynamics, forcing and feedbacks	103
6.5 Transitions and feedbacks – deglaciation in the context of	
longer-term changes	110
6.6 Glacial-Interglacial changes and the modern world	117
7 The Holocene	118
7.1 The transition to the Holocene	118
7.2 Patterns of overall climate change during the Holocene	119
7.3 The early Holocene: delays, interruptions and biosphere feedbacks	122
7.4 Major hydrological changes – a green then a brown Sahara	125
7.5 Modes of variability	128
7.6 El Niño southern oscillation (ENSO)	129
7.7 The North Atlantic (NAO) and other oscillations	134
7.8 Examples of changing extremes	137
7.9 The Medieval Warm Period and the Little Ice Age	139
7.10 Signs of earlier synchronous changes from the mid Holocene	
onwards	142
7.11 External forcing	143
7.12 Feedbacks	146
7.13 Concluding comments	150
8 The Anthropocene – a changing atmosphere	152
8.1 The idea of the Anthropocene	152
8.2 Increasing concentrations of greenhouse gases	153
8.3 Atmospheric aerosols	162
8.4 Chlorofluorocarbons and Ozone	165
8.5 Other atmospheric contaminants	167
8.6 Summary and conclusions	168
9 The Anthropocene – changing land	169
9.1 Changed global nutrient cycles	169
9.2 Deforestation	17
9.3 Land degradation and desertification	173
9.4 The long-term palaeo-perspective	174

10 T	he Anthropocene: changing aquatic environments	
a	nd ecosystems	179
10.1	Introduction	179
10.2	Changes in lake-water chemistry	179
10.3	Other hydrological changes – rivers and groundwater	183
10.4	Coastal and marine impacts	186
11 (Changing biodiversity	190
11.1	Extinctions	190
11.2	Species diversity	192
11.3	Consequences for ecosystem function	193
12 I	Detection and attribution	1 97
	Introduction	197
12.2	Detection and attribution – context and distinctions	197
12.3	Detection – a warming world	199
12.4	Rising sea-level	205
12.5	Ecosystem responses	212
12.6	Attribution	217
12.7	Concluding comments	227
	uture global mean temperatures and sea-level	229
	Future changes in global mean temperature	229
	Future global mean sea-level	240
	The longer term – are there 'surprises' round the corner?	242
13.4	Concluding comments and questions arising	245
	rom the global to the specific	247
	Introduction	247
	Future precipitation, evaporation and runoff	248
	Modelling monsoons and ENSO	252
	Circum-Arctic climates	254
	High-resolution simulations	255
	Floods in the future	258
14.7	Future droughts	259
	mpacts and vulnerability	262
	Introduction	262
	Sectoral impacts and impacts on ecosystems	263
15.3	Impacts, risk and vulnerability assessment	275
	Sceptics, responses and partial answers	279
	Introduction	279
	Some sceptical science-based arguments	280
	Some non-scientific assertions	285
16.4	Key questions and some tentative responses	286

Contents

16.5	A personal	perspective	on	mitigation	and	adaptation

16.6 A final key issue

References Index

346

289

291

296