

## The science and technology of materials in automotive engines

Hiroshi Yamagata



## Contents

|     | Preface                                                 | xi     |
|-----|---------------------------------------------------------|--------|
| 1   | Engines                                                 | 1      |
| 1.1 | The reciprocating engine                                | 1      |
|     | 1.1.1 The four-stroke engine                            | 2      |
|     | 1.1.2 The two-stroke engine                             | 2 3    |
|     | 1.1.3 The diesel engine                                 | 4      |
| 1.2 | Advantages and disadvantages of reciprocating engines   | 5      |
| 1.3 | Engine components and typical materials                 | 5      |
|     | 1.3.1 Components                                        | 5      |
|     | 1.3.2 Typical materials                                 | 6      |
| 1.4 | Recent trends in engine technology                      | 7      |
| 1.5 | References and notes                                    | 9      |
| 2   | The cylinder                                            | 10     |
| 2.1 | Structures and functions                                | 10     |
| 2.2 | The cast iron monolithic block                          | 15     |
|     | 2.2.1 Honing, lubrication and oil consumption           | 17     |
|     | 2.2.2 Improvement of wear resistance of cast iron block | cks 22 |
| 2.3 | The compact graphite iron monolithic block              | 22     |
| 2.4 | Aluminum blocks with enclosed cast iron liners to       |        |
|     | improve cooling performance                             | 25     |
| 2.5 | Thermal distortion and heat discharge                   | 29     |
|     | 2.5.1 How does the cylinder enclosing a press-fit liner | ,      |
|     | deform with heat?                                       | 29     |
|     | 2.5.2 Powder metallurgical aluminum liner improves      |        |
|     | heat transfer                                           | 30     |
| 2.6 | Improving engine compaction with surface modification   | ıs 32  |
|     | 2.6.1 Shortening the bore interval                      | 32     |
|     | 2.6.2 Chromium plating                                  | 32     |
|     | 2.6.3 Ni-SiC composite plating                          | 33     |
|     | 2.6.4 Thermal spray                                     | 37     |

|    | •        |
|----|----------|
| VI | Contents |
|    |          |

|            | 2.6.5 The hyper-eutectic Al-Si block                                                                                  | 37       |
|------------|-----------------------------------------------------------------------------------------------------------------------|----------|
|            | 2.6.6 Cast-in composite                                                                                               | 39       |
| 2.7        | Casting technologies for aluminum cylinder blocks                                                                     | 40       |
|            | 2.7.1 Sand casting                                                                                                    | 42       |
|            | 2.7.2 Lost foam process                                                                                               | 43       |
|            | 2.7.3 High-pressure die casting                                                                                       | 43       |
|            | 2.7.4 Gravity die casting                                                                                             | 45       |
|            | 2.7.5 Low-pressure die casting                                                                                        | 45       |
| • •        | 2.7.6 Squeeze die casting                                                                                             | 46       |
| 2.8        | Open and closed deck structures                                                                                       | 46       |
| 2.9        | The two-stroke-cycle engine cylinder                                                                                  | 48       |
| 2.10       | Conclusions                                                                                                           | 49       |
| 2.11       | References and notes                                                                                                  | 51       |
| 3          | The piston                                                                                                            | 53       |
| 3.1        | Structures and functions                                                                                              | 53       |
|            | 3.1.1 Function                                                                                                        | 53       |
|            | 3.1.2 The use of Si to decrease the thermal expansion of                                                              |          |
|            | aluminum                                                                                                              | 58       |
| 3.2        | Manufacturing process                                                                                                 | 59       |
|            | 3.2.1 Casting                                                                                                         | 59       |
|            | 3.2.2 Modifying the distribution of Si crystal                                                                        | 62       |
| 3.3        | Piston design to compensate thermal expansion                                                                         | 65       |
| 3.4        | Heat treatment                                                                                                        | 68       |
|            | 3.4.1 Age hardening and age softening                                                                                 | 68       |
|            | 3.4.2 Hardness measurement estimates the piston temperatu                                                             |          |
| 2 5        | during operation                                                                                                      | 70       |
| 3.5<br>3.6 | Reinforcement of the piston ring groove                                                                               | 72       |
| 3.0        | The high-strength piston mutarials at high temperatures                                                               | 76       |
|            | <ul><li>3.6.1 Strength of piston materials at high temperatures</li><li>3.6.2 The lightweight forged piston</li></ul> | 76<br>77 |
|            | 3.6.3 Powder-metallurgical aluminum alloy raises                                                                      | //       |
|            | high-temperature strength                                                                                             | 80       |
|            | 3.6.4 The iron piston                                                                                                 | 81       |
| 3.7        | Conclusions                                                                                                           | 83       |
| 3.8        | References and notes                                                                                                  | 84       |
| 4          | The piston ring                                                                                                       | 87       |
| 4.1        | Functions                                                                                                             | 87       |
| 4.2        | Suitable shapes to obtain high power output                                                                           | 89       |
| 4.3        | Ring materials                                                                                                        | 95       |
|            | 4.3.1 Flaky graphite cast iron                                                                                        | 95       |
|            | =/ <b>O</b>                                                                                                           |          |

|     | Contents                                                                            | vii      |
|-----|-------------------------------------------------------------------------------------|----------|
|     | 4.3.2 Use of spherical graphite cast iron to improve elast                          |          |
|     | modulus and toughness                                                               | 98<br>99 |
| 4.4 | 4.3.3 Using steel to generate lightweight rings Designing the self-tension of rings | 103      |
| 4.4 | 4.4.1 The distribution of contact pressure and tension                              | 103      |
|     | 4.4.2 Tensioning                                                                    | 102      |
| 4.5 | Surface modification to improve friction and wear                                   | 104      |
| 1.0 | 4.5.1 Surface modifications during running-in                                       | 104      |
|     | 4.5.2 Surface modifications to improve durability                                   | 106      |
| 4.6 | Conclusions                                                                         | 108      |
| 4.7 | References and notes                                                                | 108      |
| 5   | The camshaft                                                                        | 110      |
| 5.1 | Functions                                                                           | 110      |
| 5.2 | Tribology of the camshaft and valve lifter                                          | 113      |
| 5.3 | Improving wear resistance of the cam lobe                                           | 116      |
|     | 5.3.1 Chilled cast iron                                                             | 116      |
|     | 5.3.2 Analysis of chemical composition of cast iron                                 |          |
|     | before pouring                                                                      | 123      |
|     | 5.3.3 Finishing – boring and grinding                                               | 125      |
|     | 5.3.4 Composite structures                                                          | 126      |
| 5.4 | Reducing friction in the valve train                                                | 128      |
| 5.5 | Conclusions                                                                         | 130      |
| 5.6 | References and notes                                                                | 131      |
| 6   | The valve and valve seat                                                            | 132      |
| 6.1 | Functions                                                                           | 132      |
| 6.2 | Alloy design of heat-resistant steels                                               | 134      |
|     | 6.2.1 Martensitic steel                                                             | 134      |
|     | 6.2.2 Austenitic steel                                                              | 136      |
| 6.3 | The bonded valve using friction welding                                             | 139      |
| 6.4 | Increasing wear resistance                                                          | 143      |
|     | 6.4.1 Stellite coating                                                              | 143      |
|     | 6.4.2 The Ni-based superalloy valve                                                 | 143      |
| 6.5 | Lighter valves using other materials                                                | 145      |
|     | 6.5.1 Ceramics                                                                      | 145      |
|     | 6.5.2 Titanium alloys                                                               | 145      |
| 6.6 | The valve seat                                                                      | 147      |
| 6.7 | Conclusions                                                                         | 150      |
| 6.8 | References and notes                                                                | 150      |
| 7   | The valve spring                                                                    | 152      |
| 7.1 | Functions                                                                           | 152      |

| viii       | Contents                                                     |            |
|------------|--------------------------------------------------------------|------------|
| 7.2        | Steel wires                                                  | 154        |
| 7.3        | Coiling a spring                                             | 156        |
| 7.4        | Improving fatigue strength by shot peening                   | 158        |
| 7.5<br>7.6 | The cylinder head Conclusions                                | 161        |
| 7.0<br>7.7 | References and notes                                         | 163<br>163 |
|            |                                                              |            |
| 8          | The crankshaft                                               | 165        |
| 8.1        | Functions                                                    | 165        |
| 8.2        | Types of crankshaft                                          | 166        |
|            | 8.2.1 The monolithic crankshaft                              | 166        |
| 0.2        | 8.2.2 The assembled crankshaft                               | 169        |
| 8.3        | Rigidity                                                     | 170        |
| 8.4        | Forging                                                      | 170        |
|            | 8.4.1 Deformation stress                                     | 170        |
|            | 8.4.2 Recrystallization and recovery                         | 171        |
|            | 8.4.3 Hot forging                                            | 173        |
|            | 8.4.4 Cold and semi-hot forging<br>8.4.5 Combination forging | 175        |
| 8.5        | 6 6                                                          | 178        |
| 0.3        | Surface-hardening methods 8.5.1 Carburizing                  | 178<br>178 |
|            | 8.5.2 Nitriding                                              | 187        |
|            | 8.5.3 Nitrocarburizing                                       | 188        |
|            | 8.5.4 Carbonitriding                                         | 189        |
|            | 8.5.5 Ion nitriding                                          | 190        |
|            | 8.5.6 Induction hardening                                    | 190        |
| 8.6        | Micro-alloyed steel                                          | 194        |
| 8.7        | Strengthening                                                | 194        |
| 8.8        | Conclusions                                                  | 204        |
| 8.9        | References and notes                                         | 204        |
| 9          | The connecting rod                                           | 207        |
| 9.1        | Functions                                                    | 207        |
| 9.2        | The monolithic con-rod                                       | 209        |
| 9.3        | The needle roller bearing                                    | 212        |
|            | 9.3.1 Fatigue failure                                        | 212        |
|            | 9.3.2 Factors affecting the life of bearings                 | 215        |
|            | 9.3.3 Secondary refining after steel-making                  | 217        |
| 9.4        | The assembled con-rod                                        | 218        |
|            | 9.4.1 Structure and material                                 | 218        |
|            | 9.4.2 The con-rod bolt                                       | 218        |
| 9.5        | The plain bearing                                            | 222        |
| 9.6        | Fracture splitting                                           | 224        |
|            |                                                              |            |

|            | C                                                                                | Contents | ix         |
|------------|----------------------------------------------------------------------------------|----------|------------|
| 9.7<br>9.8 | Conclusions References and notes                                                 |          | 226<br>226 |
| 10         | The catalyst                                                                     |          | 228        |
| 10.1       | The development of catalysts for petrol engines                                  |          | 228        |
| 10.2       | Structures and functions                                                         |          | 229        |
| 10.3       | The three-way catalyst                                                           |          | 232        |
|            | 10.3.1 Oxidation, reduction and three-way cataly                                 | sts      | 232        |
|            | 10.3.2 Deterioration of catalysts                                                |          | 233        |
| 10.4       | The honeycomb substrate                                                          |          | 235        |
|            | 10.4.1 Ceramic                                                                   |          | 235        |
| 10.5       | 10.4.2 Metal                                                                     |          | 235        |
| 10.5       | The development of catalysts to reduce NOx                                       |          | 238<br>239 |
| 10.6       | Controlling pollutants at cold start 10.6.1 Reducing heat mass and back-pressure |          | 239        |
|            | 10.6.2 The close-coupled catalytic converter                                     |          | 239        |
| 10.7       | On-board diagnosis                                                               |          | 241        |
| 10.7       | Exhaust gas after-treatment for diesel engines                                   |          | 241        |
| 10.0       | 10.8.1 Diesel particulate filters                                                |          | 241        |
|            | 10.8.2 Regenerative methods                                                      |          | 244        |
|            | 10.8.3 Expendable catalyst additive                                              |          | 245        |
|            | 10.8.4 The deNOx catalyst                                                        |          | 245        |
| 10.9       | Conclusions                                                                      |          | 246        |
| 10.10      | References and notes                                                             |          | 246        |
| 11         | The turbocharger and the exhaust manifold                                        |          | 248        |
| 11.1       | Functions of the turbocharger                                                    |          | 248        |
| 11.2       | The turbine wheel                                                                |          | 249        |
|            | 11.2.1 Turbine and compressor designs                                            |          | 249        |
|            | 11.2.2 Investment casting                                                        |          | 252        |
| 11.3       | The turbine housing                                                              |          | 256        |
|            | 11.3.1 Cast iron                                                                 |          | 255        |
|            | 11.3.2 Cast steel                                                                |          | 255        |
| 11.4       | The exhaust manifold                                                             |          | 256        |
| 11.5       | Conclusions                                                                      |          | 260        |
| 11.6       | References and notes                                                             |          | 260        |
| Gloss      | ary                                                                              |          | 261        |
| Apper      | ndices                                                                           |          | 265        |
| A          | International standards conversion table for alloy                               | s        | 265        |
| В          | Function analysis table                                                          |          | 267        |
| C          | The phase diagram                                                                |          | 269        |

| X            | Contents                                           |     |
|--------------|----------------------------------------------------|-----|
| D            | Types of cast iron                                 | 275 |
| $\mathbf{E}$ | Steel-making and types of steel                    | 279 |
| F            | Creating various properties through heat treatment | 282 |
| $\mathbf{G}$ | Mechanisms for strengthening metals                | 288 |
| H            | Surface modification                               | 292 |
| I            | Joining technology                                 | 297 |
| J            | Aluminium casting                                  | 299 |
| K            | Elastic deformation and plastic deformation        | 305 |

307

309

Metal matrix composites in engines

Index