
HORMONAL REGULATION OF FARM ANIMAL GROWTH

K.L. HOSSNER

Contents

1	Whole Animal Growth	1
	Measuring Animal Growth	1
	Embryonic and Fetal Growth	3
	Growth Curves	4
	Genetics, Nutrition and Environmental Effects	
	on Whole Animal Growth	ϵ
	Genetics	6
	Nutrition	9
	Environmental factors	10
2	Cellular and Molecular Biology	13
	Prokaryotic and Eukaryotic Organisms	13
	Eukaryotic cell organelles	14
	The Cell Cycle	16
	The Central Dogma of Cell Biology	18
	Eukaryotic genes	19
	Ribonucleic Acid	21
	Messenger RNA and translation of protein	21
	RNA polymerases	23
	Regulation of gene transcription	24
	Transcriptional control of specific genes	25
	Transcription factors	26
	Biotechnology and Genetic Engineering	27
	Transgenic Animals and their Potential	28
	Identifying, Isolating and Transferring Genes	28
	Homologous recombination, gene targeting	
	and gene knockouts	33
3	The Endocrine System	37
	Control of Pituitary Hormone Secretion	43
	Hormone Receptors	46
	Effector Molecules, Transducers and Second Messengers	48
	, treesengers	"£ U

4	Development of Muscle, Skeletal System	
	and Adipose Tissue	55
	Embryonic Development and Cell Differentiation	55
	Cell Proliferation and Differentiation	59
	The Skeletal System and Bone Growth	60
	Types of Bones and Gross Anatomy	61
	Bone Cells and Bone Matrix Formation	61
	Osteoclasts and bone resorption	64
	Regulation of osteoclast function	65
	The Epiphyseal Plate	67
	Skeletal Muscle Development	68
	Embryonic formation of skeletal muscle	68
	Skeletal muscle satellite cells	69
	Myofilaments, Myofibrils and Sarcomeres	71
	Sarcomeric proteins: actin, myosin and titin	73
	Myofibres and muscle contraction	74
	Skeletal Muscle Fibre Types	77
	Skeletal muscle protein turnover	79
	The formation of multinucleated skeletal muscle cells	80
	Adipose Tissue Growth and Development	82
	Brown adipose tissue	82
	White adipose tissue	83
	Adipose tissue development	84
	Adipose tissue growth: hyperplasia vs hypertrophy Lipogenesis and Lipolysis	85 87
	2. pogottota utta Esporyoto	07
5	Growth Hormone and Insulin-like Growth Factors	94
	The GH Molecule	94
	Control of GH secretion	96
	GH receptors	99
	Metabolic actions of GH	101
	Excess and inadequate GH: giants and dwarfs	104
	IGFs or Somatomedins	105
	Discovery of the IGFs	105
	IGF genes and molecules	107
	IGF receptors	108
	IGF-binding proteins	110
	Metabolic effects of the IGFs	111
	Effects of the IGFs on animal growth	112
	Modification of the somatomedin hypothesis	115
	Effects of GH on Farm Animal Production	116
	GH and the development of transgenic animals	119
6	Calcium Homeostasis	
	and Regulation of Bone Growth	123
	Hormonal Regulation of Calcium Homeostasis	124

	Contents	vii
	Parathyroid hormone	124
	1,25-Dihydroxy vitamin D ₃	126
	Biological actions of 1,25-dihydroxy vitamin D ₃	127
	Calcitonin	129
	Regulation of Bone Growth and Development	131
	The hedgehogs and early skeletal differentiation	131
	Regulation of bone growth and differentiation	
	by hormones	132
	Growth factors and bone	135
	FGF	135
	PDGF	137
	Transforming growth factor- β	140
	Bone morphogenetic proteins	143
_	However Consult Fraters and Chaletel Massels	146
7	Hormones, Growth Factors and Skeletal Muscle	146 146
	Experimental Systems to Study Myogenesis	140
	Myogenic cell systems	148
	Muscle Regulatory Factors (MRFs)	150
	Effects of the MRFs on muscle development	151
	Regulation of MRF expression Growth Factors Affecting Muscle Growth	153
	IGFs	153
	Myostatin	155
	FGF	156
	TGF-β	156
	BMPs	157
	Hepatocyte growth factor	157
	Hormones regulating muscle growth	158
8	Hormones, Growth Factors	
	and Adipose Tissue	163
	Cell Systems Used to Study Adipogenesis	163
	Transcription Factors and Adipogenesis	166
	PPARs	167
	C/EBPs	169
	ADD1/SREBP1	170
	Nuclear co-activators and co-repressors: fine-tuning the	150
	adipogenic response	172
	Hormones and Growth Factors Affecting Preadipocytes	173
	and Adipocytes	173
	Insulin	173
	GH and the IGFs Glucocorticoids	174
	Giucocorticolds Prostaglandins and cAMP	176
		170
	Negative Regulators of Adipose Differentiation Adipose tissue as an endocrine organ	178
	Authose ussue as an endocume organ	170

9	Steroids and Animal Growth	181
	Oestrogens and Ruminant Growth	183
	Oestrogens and Non-ruminants	185
	Androgens and Ruminant Growth	186
	Mechanism of Action of Steroids in Ruminant Growth	187
	Androgen mechanisms of action	188
10	Catecholamines, Beta-agonists and Nutrient	
	Repartitioning	191
	The Autonomic Nervous System and the Adrenal Medulla	192
	Adrenergic Receptors	195
	β-Adrenergic agonists	198
	Effects of β-adrenergic agonists on growth	170
	and body composition	198
11	Leptin, Body Composition	
	and Appetite Control	202
	Theories on the Short-term Regulation of Food Intake	202
	The Long-term Regulation of Food Intake – the Lipostat Theory	205
	The Discovery of Leptin	203
	The leptin gene and molecule	207
	Leptin receptors and binding proteins	208
	Biological actions of leptin	210
	Effects of leptin on reproduction	212
	Direct peripheral effects of leptin	212
	Regulation of leptin concentrations	213
	Significance of leptin to animal production	213
	Appetite-inducing (Orexigenic) Peptides of the Hypothalamus	214
Ind	lex	217