Airplane Stability and Control

SECOND EDITION

A History of the Technologies That Made Aviation Possible

Malcolm J. Abzug E. Eugene Larrabee

CAMBRIDGE AEROSPACE SERIES

Contents

Pre	face		page xvii
1	Early I	Developments in Stability and Control	i
	1.1	Inherent Stability and the Early Machines	1
	1.2	The Problem of Control	1
	1.3	Catching Up to the Wright Brothers	3
	1.4	The Invention of Flap-Type Control Surfaces and Tabs	3
	1.5	Handles, Wheels, and Pedals	4
	1.6	Wright Controls	5 5
	1.7	Blériot and Depérdussin Controls	
	1.8	Stability and Control of World War I Pursuit Airplanes	6
	1.9	Contrasting Design Philosophies	7
	1.10	Frederick Lanchester	9
	1.11	•	9
	1.12	Metacenter, Center of Pressure, Aerodynamic Center,	
		and Neutral Point	11
2	Teache	ers and Texts	13
	2.1	Stability and Control Educators	13
	2.2	Modern Stability and Control Teaching Methods	14
	2.3	Stability and Control Research Institutions	14
	2.4	Stability and Control Textbooks and Conferences	17
3	Flying Qualities Become a Science		19
	3.1	Warner, Norton, and Allen	19
	3.2	The First Flying Qualities Specification	22
	3.3	Hartley Soulé and Floyd Thompson at Langley	22
	3.4	Robert Gilruth's Breakthrough	26
	3.5	S. B. Gates in Britain	29
	3.6	The U.S. Military Services Follow NACA's Lead	30
	3.7	Civil Airworthiness Requirements	32
	3.8	World-Wide Flying Qualities Specifications	32
	3.9	Equivalent System Models and Pilot Rating	33
	3.10	The Counterrevolution	34
	3.11	Procurement Problems	35
	3.12	Variable-Stability Airplanes Play a Part	35
	3.13	Variable-Stability Airplanes as Trainers	36
	3.14	The Future of Variable-Stability Airplanes	37
	3.15	The V/STOL Case	39

Contents	

	3.17	Two Famous Airplanes Changing Military Missions and Flying Qualities Requirements Long-Lived Stability and Control Myths	41 43 44
4	Power I	Effects on Stability and Control	45
	4.1 4.2 4.3 4.4 4.5 4.6	Propeller Effects on Stability and Control Direct-Thrust Moments in Pitch Direct-Thrust Moments in Yaw World War II Twin-Engine Bombers Modern Light Twin Airplanes Propeller Slipstream Effects	45 46 47 47 49 50 52
	4.7 4.8	Direct Propeller Forces in Yaw (or at Angle of Attack) Jet and Rocket Effects on Stability and Control 4.8.1 Jet Intake Normal Force 4.8.2 Airstream Deviation Due to Inflow	53 53 54
	4.9	Special VTOL Jet Inflow Effects 4.9.1 Jet Damping and Inertial Effects	54 55
5	Manag	ing Control Forces	57
	5.1 5.2 5.3 5.4	Desirable Control Force Levels Background to Aerodynamically Balanced Control Surfaces Horn Balances Overhang or Leading-Edge Balances	57 57 60 61
	5.5 5.6	Frise Ailerons Aileron Differential	63 65 66
	5.7 5.8 5.9	Balancing or Geared Tabs Trailing-Edge Angle and Beveled Controls Corded Controls	66 68 69
	5.10	Spoiler Ailerons 5.10.1 Spoiler Opening Aerodynamics 5.10.2 Spoiler Steady-State Aerodynamics 5.10.3 Spoiler Operating Forces 6.10.4 Spoiler Aileron Applications	70 70 71 71
	5.11 5.12 5.13	Flying or Servo and Linked Tabs Spring Tabs	72 74 75
	5.14 5.15 5.16	Springy Tabs and Downsprings All-Movable Controls Mechanical Control System Design Details	77 78 78 79
	5.17 5.18 5.19 5.20		80 80 81
	5.20 5.21 5.22 5.23	Fly-by-Wire Remaining Design Problems in Power Control Systems Safety Issues in Fly-by-Wire Control Systems	82 86 87
	5.24 5.25	Managing Redundancy in Fly-by-Wire Control Systems	88 89

Хi

6	Stability and Control at the Design Stage		90
	6.1	Layout Principles	90
		6.1.1 Subsonic Airplane Balance	90
		6.1.2 Tail Location, Size, and Shape	91
	6.2	Estimation from Drawings	92
		6.2.1 Early Methods	92
		6.2.2 Wing and Tail Methods	92
		6.2.3 Bodies	93
		6.2.4 Wing-Body Interference	93
		6.2.5 Downwash and Sidewash	94
		6.2.6 Early Design Methods Matured –	
		DATCOM, RAeS, JSASS Data Sheets	95
		6.2.7 Computational Fluid Dynamics	95
	6.3	Estimation from Wind-Tunnel Data	97
7	The J	ets at an Awkward Age	100
	7.1	Needed Devices Are Not Installed	100
	7.2	F4D, A4D, and A3D Manual Reversions	100
	7.3	Partial Power Control	101
	7.4	Nonelectronic Stability Augmentation	101
	7.5	Grumman XF10F Jaguar	104
	7.6	Successful B-52 Compromises	105
		7.6.1 The B-52 Rudder Has Limited Control	
		Authority	105
		7.6.2 The B-52 Elevator Also Has Limited	
		Control Authority	106
		7.6.3 The B-52 Manually Controlled Ailerons	
		Are Small	107
8	The l	Discovery of Inertial Coupling	109
	8.1	W. H. Phillips Finds an Anomaly	109
	8.2	The Phillips Inertial Coupling Technical Note	109
	8.3	The First Flight Occurrences	112
	8.4	The 1956 Wright Field Conference	115
	8.5	Simplifications and Explications	110
	8.6	The F4D Skyray Experience	118
	8.7	Later Developments	120
	8.8	Inertial Coupling and Future General-Aviation Aircraft	120
9	Spinning and Recovery		12
	9.1	Spinning Before 1916	12
	9.2	Advent of the Free-Spinning Wind Tunnels	12
	9.3	Systematic Configuration Variations	124
	9.4	Design for Spin Recovery	124
	9.5	Changing Spin Recovery Piloting Techniques	120
		9.5.1 Automatic Spin Recovery	12
	9.6	The Role of Rotary Derivatives in Spins	12
	9.7	Rotary Balances and the Steady Spin	12

xii Contents

	9.8	Rotary Balances and the Unsteady Spin	130
	9.9	Parameter Estimation Methods for Spins	131
	9.10	The Case of the Grumman/American AA-1B	131
	9.11	The Break with the Past	133
	9.12	Effects of Wing Design on Spin Entry and Recovery	134
	9.13	Drop and Radio-Controlled Model Testing	136
	9.14	Remotely Piloted Spin Model Testing	137
	9.15	Criteria for Departure Resistance	137
	9.16	Vortex Effects and Self-Induced Wing Rock	141
	9.17	Bifurcation Theory	142
	9.18	Departures in Modern Fighters	142
10			
10		al Airplane Maneuverability	146
	10.1	How Fast Should Fighter Airplanes Roll?	146
	10,2	Air-to-Air Missile-Armed Fighters	148
	10.3	Control Sensitivity and Overshoots in Rapid Pullups	148
		10.3.1 Equivalent System Methods	148
		10.3.2 Criteria Based on Equivalent Systems	149
		10.3.3 Time Domain–Based Criteria	152
	10.4	Rapid Rolls to Steep Turns	155
	10.5	Supermaneuverability, High Angles of Attack	157
	10.6	Unsteady Aerodynamics in the Supermaneuverability	
		Regime	158
		10.6.1 The Transfer Function Model for	150
		Unsteady Flow	158
	10.7	The Inverse Problem	160
	10.8	Thrust-Vector Control for Supermaneuvering	160
	10.9	Forebody Controls for Supermaneuvering	160
	10.10	Longitudinal Control for Recovery	161
	10.11	Concluding Remarks	161
11	High N	Mach Number Difficulties	162
	11.1	A Slow Buildup	162
	11.2	The First Dive Pullout Problems	162
	11.3	P-47 Dives at Wright Field	165
	11.4	P-51 and P-39 Dive Difficulties	167
	11.5	Transonic Aerodynamic Testing	168
	11.6	Invention of the Sweptback Wing	169
	11.7	Sweptback Wings Are Tamed at Low Speeds	172
		11.7.1 Wing Leading-Edge Devices	172
		11.7.2 Fences and Wing Engine Pylons	172
	11.8	Trim Changes Due to Compressibility	175
	11.9	Transonic Pitchup	176
	11.10	Supersonic Directional Instability	179
	11.11	Principal Axis Inclination Instability	181
	11.12	High-Altitude Stall Buffet	181
	11.13	Supersonic Altitude Stability	182
	11.14	· ·	186

Contents

12	Naval A	ircraft Pr	oblems	187
	12.1 12.2 12.3 12.4 12.5 12.6 12.7	Aerodyna Theoretic Direct Li The T-45. The Lock	Carrier Approaches amic and Thrust Considerations cal Studies ft Control A Goshawk cheed S-3A Viking ng Remarks	187 188 189 193 195 196
13	Ultralig	tht and H	ıman-Powered Airplanes	198
	13.1 13.2 13.3 13.4 13.5 13.6	Commerce The Goss Ultraligh Turning I	Mass Effects cial and Kit-Built Ultralight Airplanes samer and MIT Human-Powered Aircraft t Airplane Pitch Stability Human-Powered Ultralight Airplanes ng Remarks	198 199 200 202 202 204
14	Fuel SI	osh, Deep	Stall, and More	205
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8	Deep Sta Ground I Direction Vee- or E Control S Rudder I Flight Ve 14.8.1 14.8.2 14.8.3 14.8.4	Effect nal Stability and Control in Ground Rolls Butterfly Tails Surface Buzz Lock and Dorsal Fins Chicle System Identification from Flight Test Early Attempts at Identification Knob Twisting	205 209 212 215 217 219 220 224 224 224 225
15	Safe Personal Airplanes		231	
	15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10	Progress Early Sa 1948 and Control : Wing Le The Role Inapprop Unusual	agenheim Safe Airplane Competition after the Guggenheim Competition fe Personal Airplane Designs d 1966 NACA and NASA Test Series Friction and Apparent Spiral Instability evelers e of Displays oriate Stability Augmentation Aerodynamic Arrangements ying Demands on Stability and Control Needle, Ball, and Airspeed Artificial Horizon, Directional Gyro,	231 233 234 235 237 237 240 240 241
			and Autopilots	241

xiv	Contents

	15.11 15.12	Single-Pilot IFR Operation The Prospects for Safe Personal Airplanes	242 243	
16		ty and Control Issues with Variable Sweep	244	
10		•		
	16.1	The First Variable-Sweep Wings – Rotation and Translation	244	
	16.2 16.3	The Rotation-Only Breakthrough The F-111 Aardvark, or TFX	244 245	
	16.4	The F-14 Tomcat	245	
	16.5	The Rockwell B-1	246	
	16.6	The Oblique or Skewed Wing	247	
	16.7	Other Variable-Sweep Projects	251	
17	Moder	n Canard Configurations	252	
	17.1	Burt Rutan and the Modern Canard Airplane	252	
	17.2	Canard Configuration Stall Characteristics	252	
	17.3	Directional Stability and Control of Canard Airplanes	253	
	17.4	The Penalty of Wing Sweepback on Low Subsonic Airplanes	253	
	17.5	Canard Airplane Spin Recovery	254	
	17.6	Other Canard Drawbacks	255	
	17.7 17.8	Pusher Propeller Problems The Special Core of the Venegar	257	
	17.9	The Special Case of the Voyager Modern Canard Tactical Airplanes	257 257	
10		•	257	
18				
	18.1	Euler and Hamilton	258	
	18.2	Linearization End No. 1	262	
	18.3 18.4	Early Numerical Work Glauert's and Later Nondimensional Forms	263	
	18.5	Rotary Derivatives	264 266	
	18.6	Stability Boundaries	267	
	18.7	Wind, Body, Stability, and Principal Axes	267	
	18.8	Laplace Transforms, Frequency Response, and Root Locus	270	
	18.9	The Modes of Airplane Motion	271	
		18.9.1 Literal Approximations to the Modes	273	
	18.10	Time Vector Analysis	274	
	18.11			
	18.12	Atmospheric Models	277	
	18.13	Integration Methods and Closed Forms	280	
	18.14	Steady-State Solutions	281	
	18.15	Equations of Motion Extension to Suborbital Flight	282	
		18.15.1 Heading Angular Velocity Correction and Initialization	284	
	18.16	Suborbital Flight Mechanics	284	
	18.17	Additional Special Forms of the Equations of Motion	284	
19	The El	astic Airplane	286	
	19.1	Aeroelasticity and Stability and Control	286	
	19.2	Wing Torsional Divergence	287	

Contents xv

	19.3	The Semirigid Approach to Wing Torsional Divergence	287	
	19.4	The Effect of Wing Sweep on Torsional		
		Divergence	288	
	19.5	Aileron-Reversal Theories	289	
	19.6	Aileron-Reversal Flight Experiences	290	
	19.7	Spoiler Ailerons Reduce Wing Twisting in Rolls	291	
	19.8	Aeroelastic Effects on Static Longitudinal Stability	291	
	19.9	Stabilizer Twist and Speed Stability	295	
	19.10	Dihedral Effect of a Flexible Wing	295	
	19.11	Finite-Element or Panel Methods in Quasi-Static	201	
		Aeroelasticity	296	
	19.12	Aeroelastically Corrected Stability Derivatives	298	
		Mean and Structural Axes	299	
		Normal Mode Analysis	299	
		Quasi-Rigid Equations	300	
		Control System Coupling with Elastic Modes	300	
	19.17	Reduced-Order Elastic Airplane Models	302	
	19.18	Second-Order Elastic Airplane Models	302	
	19.19	Concluding Remarks	302	
20	Stabili	y Augmentation	303	
	20.1	The Essence of Stability Augmentation	303	
	20.2	Automatic Pilots in History	304	
	20.3	The Systems Concept	304	
	20.4	Frequency Methods of Analysis	304	
	20.5	Early Experiments in Stability Augmentation	305	
		20.5.1 The Boeing B-47 Yaw Damper	305	
		20.5.2 The Northrop YB-49 Yaw Damper	306	
		20.5.3 The Northrop F-89 Sideslip Stability		
		Augmentor	308	
	20.6	Root Locus Methods of Analysis	308	
	20.7	Transfer-Function Numerators	310	
	20.8	Transfer-Function Dipoles	310	
	20.9	Command Augmentation Systems	310	
		20.9.1 Roll-Ratcheting	311	
	20.10	Superaugmentation, or Augmentation for Unstable		
		Airplanes	312	
	20.11	Propulsion-Controlled Aircraft	314	
	20.12	The Advent of Digital Stability Augmentation	316	
	20.13	Practical Problems with Digital Systems	316	
	20.14	Tine Domain and Linear Quadratic Optimization	316	
	20.15	Linear Quadratic Gaussian Controllers	317	
	20.16	Failed Applications of Optimal Control	319	
	20.17	• • • • • • • • • • • • • • • • • • • •		
	20.18	Robust Controllers, Singular Value Analysis	320 321	
	20.19	Decoupled Controls	321	
	20.20	Integrated Thrust Modulation and Vectoring	322	
	20.21	Concluding Remarks	322	
	_	<u> </u>		

xvi	Contents

21	Flying	Qualities Research Moves with the Times	324
	21.1	Empirical Approaches to Pilot-Induced Oscillations	324
	21.2	Compensatory Operation and Model Categories	326
	21.3	Crossover Model	327
	21.4	Pilot Equalization for the Crossover Model	327
	21.5	Algorithmic (Linear Optimal Control) Model	327
	21.6	The Crossover Model and Pilot-Induced Oscillations	328
	21.7	Gibson Approach	330
	21.8	Neal-Smith Approach	330
	21.9	Bandwidth-Phase Delay Criteria	331
	21.10	Landing Approach and Turn Studies	332
	21.11	Implications for Modern Transport Airplanes	333
	21.12	Concluding Remarks	333
22	Challe	nge of Stealth Aerodynamics	335
	22.1	Faceted Airframe Issues	335
	22.2	Parallel-Line Planform Issues	337
	22.3	Shielded Vertical Tails and Leading-Edge Flaps	338
	22.4	Fighters Without Vertical Tails	340
23	Very L	arge Aircraft	341
	23.1	The Effect of Higher Wing Loadings	341
	23.2	The Effect of Folding Wings	341
	23.3	Altitude Response During Landing Approach	342
	23.4	Longitudinal Dynamics	342
	23.5	Roll Response of Large Airplanes	343
	23.6	Large Airplanes with Reduced-Static Longitudinal Stability	343
	23.7	Large Supersonic Airplanes	343
	23.8	Concluding Remarks	343
24	Work S	Still to Be Done	345
She	ert Rice	raphies of Some Stability and Control Figures	347
	_	and Core Bibliography	357
Ind		and core biologiaphy	377
	~~~		511